• Greenplum 函数 gp_dist_random


    转载自:https://yq.aliyun.com/articles/7593

    函数作用:

    gp_dist_random('gp_id')本质上就是在所有节点查询gp_id,
    gp_dist_random('pg_authid')就是在所有节点查询pg_authid,

     

    使用greenplum时,如果需要调用一个函数,这个函数很可能就在master执行,而不会跑到segment上去执行。
    例如 random()函数。
    通过select random()来调用的话,不需要将这条SQL发送到segment节点,所以执行计划如下,没有gather motion的过程。

    postgres=# explain analyze select random();  
                                           QUERY PLAN                                         
    ----------------------------------------------------------------------------------------  
     Result  (cost=0.01..0.02 rows=1 width=0)  
       Rows out:  1 rows with 0.017 ms to end, start offset by 0.056 ms.  
       InitPlan  
         ->  Result  (cost=0.00..0.01 rows=1 width=0)  
               Rows out:  1 rows with 0.004 ms to end of 2 scans, start offset by 0.059 ms.  
     Slice statistics:  
       (slice0)    Executor memory: 29K bytes.  
       (slice1)    Executor memory: 29K bytes.  
     Statement statistics:  
       Memory used: 128000K bytes  
     Total runtime: 0.074 ms  
    (11 rows)  

    如果要让这个函数在segment执行,怎么办呢?
    通过gp_dist_random('gp_id')来调用,gp_dist_random的参数是一个可查询的视图,或表。

    postgres=# explain analyze select random() from gp_dist_random('gp_id');  
                                                                   QUERY PLAN                                                                  
    -----------------------------------------------------------------------------------------------------------------------------------------  
     Gather Motion 240:1  (slice1; segments: 240)  (cost=0.00..4.00 rows=240 width=0)  
       Rows out:  240 rows at destination with 6.336 ms to first row, 59 ms to end, start offset by 4195 ms.  
       ->  Seq Scan on gp_id  (cost=0.00..4.00 rows=1 width=0)  
             Rows out:  Avg 1.0 rows x 240 workers.  Max 1 rows (seg0) with 0.073 ms to first row, 0.075 ms to end, start offset by 4207 ms.  
     Slice statistics:  
       (slice0)    Executor memory: 471K bytes.  
       (slice1)    Executor memory: 163K bytes avg x 240 workers, 163K bytes max (seg0).  
     Statement statistics:  
       Memory used: 128000K bytes  
     Total runtime: 4279.445 ms  
    (10 rows)  

    gp_id在每个segment中都有一条记录,所以以上SQL会在每个SEGMENT中调用一次random()并返回所有结果,例如我的测试环境中有240个segment, 那么以上SQL将返回240条记录。

    在gp_id的定义中,介绍了gp_dist_random用它可以做一些管理的工作:
    譬如查询数据库的大小,查询表的大小,其实都是这样统计的。
    src/backend/catalog/postgres_bki_srcs

    /*-------------------------------------------------------------------------  
     *  
     * gp_id.h  
     *        definition of the system "database identifier" relation (gp_dbid)  
     *        along with the relation's initial contents.  
     *  
     * Copyright (c) 2009-2010, Greenplum inc  
     *  
     * NOTES  
     *    Historically this table was used to supply every segment with its  
     * identification information.  However in the 4.0 release when the file  
     * replication feature was added it could no longer serve this purpose  
     * because it became a requirement for all tables to have the same physical  
     * contents on both the primary and mirror segments.  To resolve this the  
     * information is now passed to each segment on startup based on the  
     * gp_segment_configuration (stored on the master only), and each segment  
     * has a file in its datadirectory (gp_dbid) that uniquely identifies the  
     * segment.  
     *  
     *   The contents of the table are now irrelevant, with the exception that  
     * several tools began relying on this table for use as a method of remote  
     * function invocation via gp_dist_random('gp_id') due to the fact that this  
     * table was guaranteed of having exactly one row on every segment.  The  
     * contents of the row have no defined meaning, but this property is still  
     * relied upon.  
     */  
    #ifndef _GP_ID_H_  
    #define _GP_ID_H_  
      
      
    #include "catalog/genbki.h"  
    /*  
     * Defines for gp_id table  
     */  
    #define GpIdRelationName                        "gp_id"  
      
    /* TIDYCAT_BEGINFAKEDEF  
      
       CREATE TABLE gp_id  
       with (shared=true, oid=false, relid=5001, content=SEGMENT_LOCAL)  
       (  
       gpname       name     ,  
       numsegments  smallint ,  
       dbid         smallint ,  
       content      smallint   
       );  
      
       TIDYCAT_ENDFAKEDEF  
    */  

    查询数据库大小的GP函数

    postgres=# df+ pg_database_size  
                                                                                                         List of functions  
       Schema   |       Name       | Result data type | Argument data types |  Type  |  Data access   | Volatility |  Owner   | Language |      Source code      |                         Description                           
    ------------+------------------+------------------+---------------------+--------+----------------+------------+----------+----------+-----------------------+-------------------------------------------------------------  
     pg_catalog | pg_database_size | bigint           | name                | normal | reads sql data | volatile   | dege.zzz | internal | pg_database_size_name | Calculate total disk space usage for the specified database  
     pg_catalog | pg_database_size | bigint           | oid                 | normal | reads sql data | volatile   | dege.zzz | internal | pg_database_size_oid  | Calculate total disk space usage for the specified database  
    (2 rows)  

    其中pg_database_size_name 的源码如下:
    很明显,在统计数据库大小时也用到了select sum(pg_database_size('%s'))::int8 from gp_dist_random('gp_id');

    Datum  
    pg_database_size_name(PG_FUNCTION_ARGS)  
    {  
            int64           size = 0;  
            Name            dbName = PG_GETARG_NAME(0);  
            Oid                     dbOid = get_database_oid(NameStr(*dbName));  
      
            if (!OidIsValid(dbOid))  
                    ereport(ERROR,  
                                    (errcode(ERRCODE_UNDEFINED_DATABASE),  
                                     errmsg("database "%s" does not exist",  
                                                    NameStr(*dbName))));  
                                                      
            size = calculate_database_size(dbOid);  
              
            if (Gp_role == GP_ROLE_DISPATCH)  
            {  
                    StringInfoData buffer;  
                      
                    initStringInfo(&buffer);  
      
                    appendStringInfo(&buffer, "select sum(pg_database_size('%s'))::int8 from gp_dist_random('gp_id');", NameStr(*dbName));  
      
                    size += get_size_from_segDBs(buffer.data);  
            }  
      
            PG_RETURN_INT64(size);  
    }  

    不信我们可以直接查询这个SQL,和使用pg_database_size函数得到的结果几乎是一样的,只差了calculate_database_size的部分。

    postgres=# select sum(pg_database_size('postgres'))::int8 from gp_dist_random('gp_id');  
          sum         
    ----------------  
     16006753522624  
    (1 row)  
      
    postgres=# select pg_database_size('postgres');  
     pg_database_size   
    ------------------  
       16006763924106  
    (1 row)  

    gp_dist_random('gp_id')本质上就是在所有节点查询gp_id,
    gp_dist_random('pg_authid')就是在所有节点查询pg_authid,
    例如:

    postgres=# select * from gp_dist_random('gp_id');  
      gpname   | numsegments | dbid | content   
    -----------+-------------+------+---------  
     Greenplum |          -1 |   -1 |      -1  
     Greenplum |          -1 |   -1 |      -1  
     Greenplum |          -1 |   -1 |      -1  
     Greenplum |          -1 |   -1 |      -1  
     Greenplum |          -1 |   -1 |      -1  
     Greenplum |          -1 |   -1 |      -1  
     Greenplum |          -1 |   -1 |      -1  
     Greenplum |          -1 |   -1 |      -1  
     Greenplum |          -1 |   -1 |      -1  
     Greenplum |          -1 |   -1 |      -1  
    。。。。。。  

    如果不想返回太多记录,可以使用limit 来过滤,但是执行还是会在所有的segment都执行,如下:

    postgres=# explain analyze select random() from gp_dist_random('gp_id') limit 1;  
                                                                      QUERY PLAN                                                                     
    -----------------------------------------------------------------------------------------------------------------------------------------------  
     Limit  (cost=0.00..0.04 rows=1 width=0)  
       Rows out:  1 rows with 5.865 ms to first row, 5.884 ms to end, start offset by 4212 ms.  
       ->  Gather Motion 240:1  (slice1; segments: 240)  (cost=0.00..0.04 rows=1 width=0)  
             Rows out:  1 rows at destination with 5.857 ms to end, start offset by 4212 ms.  
             ->  Limit  (cost=0.00..0.02 rows=1 width=0)  
                   Rows out:  Avg 1.0 rows x 240 workers.  Max 1 rows (seg0) with 0.062 ms to first row, 0.063 ms to end, start offset by 4228 ms.  
                   ->  Seq Scan on gp_id  (cost=0.00..4.00 rows=1 width=0)  
                         Rows out:  Avg 1.0 rows x 240 workers.  Max 1 rows (seg0) with 0.060 ms to end, start offset by 4228 ms.  
     Slice statistics:  
       (slice0)    Executor memory: 463K bytes.  
       (slice1)    Executor memory: 163K bytes avg x 240 workers, 163K bytes max (seg0).  
     Statement statistics:  
       Memory used: 128000K bytes  
     Total runtime: 4288.007 ms  
    (14 rows)  
  • 相关阅读:
    mxGraph
    DrawIO二次开发(一)
    关于使用Draw.io画数据库E-R图的说明
    流程图软件draw.io值得你拥有
    diagrams
    http://www.avaloniaui.net/
    Qt音视频开发1-vlc解码播放
    Codeforces Round #548 (Div. 2) D 期望dp + 莫比乌斯反演
    线程
    牛客练习赛89E-牛牛小数点【数论】
  • 原文地址:https://www.cnblogs.com/xibuhaohao/p/11133294.html
Copyright © 2020-2023  润新知