• HDU 5321 Beautiful Set 容斥 (看题解)


    HDU 5321

    感觉有点抗拒这种题目, 看到就感觉自己不会写,其实就是个沙雕题, 感觉得找个时间练练这种题。

    g[ i ] 表示gcd为 i 的倍数的方案数, f[ i ] 表示gcd为 i 的方案数, 然后先算g[ i ]然后直接容斥。

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
    
    using namespace std;
    
    const int N = 1e5 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 258280327;
    const double eps = 1e-8;
    const double PI = acos(-1);
    
    template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;}
    
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    
    int n, a[N], cnt[N];
    
    int F[N], Finv[N], inv[N];
    int f[N], g[N];
    
    
    void prepare() {
        F[0] = Finv[0] = inv[1] = 1;
        for(int i = 2; i < N; i++) inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod;
        for(int i = 1; i < N; i++) F[i] = 1LL * F[i - 1] * i % mod;
        for(int i = 1; i < N; i++) Finv[i] = 1LL * Finv[i - 1] * inv[i] % mod;
    }
    
    inline int A(int n, int m) {
        if(n < 0 || n < m) return 0;
        return 1LL * F[n] * Finv[n - m] % mod;
    }
    
    inline int C(int n, int m) {
        if(n < 0 || n < m) return 0;
        return 1LL * F[n] * Finv[m] % mod * Finv[n - m] % mod;
    }
    
    int solve1() {
        for(int i = 1; i <= 100000; i++) {
            g[i] = 0;
            for(int j = 1; j <= cnt[i]; j++) {
                add(g[i], 1LL * A(cnt[i], j) * F[n - j + 1] % mod);
            }
        }
        int ans = 0;
        for(int i = 100000; i >= 1; i--) {
            f[i] = g[i];
            for(int j = i + i; j <= 100000; j += i) {
                sub(f[i], f[j]);
            }
            add(ans, 1LL * i * f[i] % mod);
        }
        return ans;
    }
    
    
    int solve2() {
        for(int i = 1; i <= 100000; i++) {
            g[i] = 0;
            for(int j = 1; j <= cnt[i]; j++) {
                add(g[i], 1LL * j * C(cnt[i], j) % mod);
            }
        }
        int ans = 0;
        for(int i = 100000; i >= 1; i--) {
            f[i] = g[i];
            for(int j = i + i; j <= 100000; j += i) {
                sub(f[i], f[j]);
            }
            add(ans, 1LL * i * f[i] % mod);
        }
        return ans;
    }
    
    void init() {
        for(int i = 1; i < N; i++) {
            cnt[i] = 0;
        }
    }
    
    int main() {
        prepare();
        while(scanf("%d", &n) != EOF) {
            init();
            for(int i = 1; i <= n; i++) {
                scanf("%d", &a[i]);
                cnt[a[i]]++;
            }
            for(int i = 1; i <= 100000; i++) {
                for(int j = i + i; j <= 100000; j += i) {
                    cnt[i] += cnt[j];
                }
            }
    
            int ans1 = solve1();
            int ans2 = solve2();
    
            if(ans1 == ans2) {
                printf("Equal %d
    ", ans1);
            }
            else if(ans1 > ans2) {
                printf("Mr. Zstu %d
    ", ans1);
            }
            else {
                printf("Mr. Hdu %d
    ", ans2);
            }
        }
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    Day18-lvs
    mysql日志
    【杂文】我们都有光明的前途(回忆录)
    【杂文】银色的 NOI2020(退役记)
    【杂文】SCOI2020 游记
    【学习笔记】字符串—广义后缀自动机
    【学习笔记】数论、数学—常见定理、结论、性质汇总
    【杂文】随心一记
    【杂文】CSP2019 蒟蒻AFO(假)记
    【模板整合计划】目录
  • 原文地址:https://www.cnblogs.com/CJLHY/p/11366971.html
Copyright © 2020-2023  润新知