感觉有点抗拒这种题目, 看到就感觉自己不会写,其实就是个沙雕题, 感觉得找个时间练练这种题。
g[ i ] 表示gcd为 i 的倍数的方案数, f[ i ] 表示gcd为 i 的方案数, 然后先算g[ i ]然后直接容斥。
#pragma GCC optimize(2) #pragma GCC optimize(3) #include<bits/stdc++.h> #define LL long long #define LD long double #define ull unsigned long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ALL(x) (x).begin(), (x).end() #define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 1e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 258280327; const double eps = 1e-8; const double PI = acos(-1); template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;} template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;} template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;} template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;} mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int n, a[N], cnt[N]; int F[N], Finv[N], inv[N]; int f[N], g[N]; void prepare() { F[0] = Finv[0] = inv[1] = 1; for(int i = 2; i < N; i++) inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod; for(int i = 1; i < N; i++) F[i] = 1LL * F[i - 1] * i % mod; for(int i = 1; i < N; i++) Finv[i] = 1LL * Finv[i - 1] * inv[i] % mod; } inline int A(int n, int m) { if(n < 0 || n < m) return 0; return 1LL * F[n] * Finv[n - m] % mod; } inline int C(int n, int m) { if(n < 0 || n < m) return 0; return 1LL * F[n] * Finv[m] % mod * Finv[n - m] % mod; } int solve1() { for(int i = 1; i <= 100000; i++) { g[i] = 0; for(int j = 1; j <= cnt[i]; j++) { add(g[i], 1LL * A(cnt[i], j) * F[n - j + 1] % mod); } } int ans = 0; for(int i = 100000; i >= 1; i--) { f[i] = g[i]; for(int j = i + i; j <= 100000; j += i) { sub(f[i], f[j]); } add(ans, 1LL * i * f[i] % mod); } return ans; } int solve2() { for(int i = 1; i <= 100000; i++) { g[i] = 0; for(int j = 1; j <= cnt[i]; j++) { add(g[i], 1LL * j * C(cnt[i], j) % mod); } } int ans = 0; for(int i = 100000; i >= 1; i--) { f[i] = g[i]; for(int j = i + i; j <= 100000; j += i) { sub(f[i], f[j]); } add(ans, 1LL * i * f[i] % mod); } return ans; } void init() { for(int i = 1; i < N; i++) { cnt[i] = 0; } } int main() { prepare(); while(scanf("%d", &n) != EOF) { init(); for(int i = 1; i <= n; i++) { scanf("%d", &a[i]); cnt[a[i]]++; } for(int i = 1; i <= 100000; i++) { for(int j = i + i; j <= 100000; j += i) { cnt[i] += cnt[j]; } } int ans1 = solve1(); int ans2 = solve2(); if(ans1 == ans2) { printf("Equal %d ", ans1); } else if(ans1 > ans2) { printf("Mr. Zstu %d ", ans1); } else { printf("Mr. Hdu %d ", ans2); } } return 0; } /* */