经典问题:换零钱方式的统计
问题介绍
现在有若干不同面额的零钱,供顾客来换。零钱种类有 0.5美元,0.25美元,10美分,5美分和1美分五种(这里也可以自定义,程序改动的地方也很简单)。
计算当顾客用a元换零钱时,共有多少种兑换方法?
解法描述(这里照搬sicp中的内容)
将总数为a的现金换成n种硬币的不同方式的数目等于:
- 将现金数a换成除第一种硬币之外的所有其它硬币的不同方式的数目,加上
- 将现金数a-d换成所有种类的硬币的不同方式数目,其中d是第一种硬币的面额
我们根据上面的算法定义,就可以得到如下算法:
- 如果a=0,属于兑换成功,因此属于1中兑换方式
- 如果a<0,兑换失败,属于0种兑换方式
- 如果n=0,兑换失败,属于0中兑换方式
sicp中的递归方法
(define (count-change amount) (cc amount 5))
(define (cc amount kinds-of-coins)
(cond ((= amount 0) 1)
((or (< amount 0) (= kinds-of-coins 0)) 0)
(else (+ (cc amount
(- kinds-of-coins 1))
(cc (- amount
(first-denomination
kinds-of-coins))
kinds-of-coins)))))
(define (first-denomination kinds-of-coins)
(cond ((= kinds-of-coins 1) 1)
((= kinds-of-coins 2) 5)
((= kinds-of-coins 3) 10)
((= kinds-of-coins 4) 25)
((= kinds-of-coins 5) 50)))
(count-change 100)
;;292
我们知道,递归有一个缺点,如果不能做到尾递归消除,那么,调用栈很快会爆炸,因此,上面的解法只能计算比较小的值,如果有面额10000的,
可能就没办法了。
递归和循环是可以替换的,只是有些递归方法转换成循环非常麻烦,甚至仅仅是理论上的可转换(如ackerman函数,可能都做不到循环,这我不知道啊!我只是打个比方)
但是循环有一个巨大的优势,它不会消耗栈空间,因此,如果能将上面的方法改写为循环的方式(或者是尾递归),那么就可以计算很大的值了。
clojure的解法
因为jvm不支持尾递归,因此,clojure提供了recur
函数,可以将尾递归转换为循环形式。下面就是clojure的解法
;; money change
;; $1/2 $1/4 $1/10 $1/20 $1/100
;;半美元,1/4美元,10美分,5美分,1美分 换零钱
;;多少种换法
(def money-kinds [50 25 10 5 1])
(defn finish?
;;判断该参数列表是否已经计算完毕
;;完成条件:
;;1,可兑换的硬币种类只剩下一种(这里通过判断元素个数是否为2),即1美分的(注意,
;;如果最小的硬币面额不是1美分的,还要判断
;;当前的余额是否能够整除,如果不能整除,则属于不能兑换的情况),返回0
;;2,如果当前余额为0,说明已经兑换完了,返回0
;;3,如果当前余额为负数,说明兑换失败了,返回0,表示本次兑换无效,不能计入总数
;;4,如果不满足以上情况,说明还没有兑换结束,直接返回该参数列表
;;例:[25,10,5,1,50] -> [25,10,5,1,50]
;; [1,25] -> 1
;; [10,5,1,0] -> 1
;; [10,5,1,-5] -> 0
[coins&money]
(cond
(= 2 (count coins&money)) 1
(= 0 (last coins&money)) 1
(> 0 (last coins&money)) 0
:default coins&money))
(defn change-helper
;;处理当前的参数列表,也就是换零钱的递归定义
;;例: [100,50,25,10,5,1,100] -> [[50,25,10,5,1,100] [100,50,25,10,5,1,100-100]]
[coins&money]
[(subvec coins&money 1 (count coins&money))
(conj (pop coins&money) (- (peek coins&money) (first coins&money)))])
(def t [[10,5,1,25] [1,10] [10,5,1,0] [10,5,1,-1]])
(defn compute
;;计算当前参数列表序列的结果
;;[[10 5 1 25] [1 10] [10 5 1 0] [10 5 1 -1]] -> ([10 5 1 25] 1 1 0)
[holder]
(map finish? holder))
(defn get-cur-r
;;从当前的计算结果中取得所有兑换结束的结果
;;([10 5 1 25] 1 1 0) -> 2
[compr]
(apply +
(filter #(not (coll? %)) compr)))
(defn get-cur-col
;;保留当前计算结果中未兑换完的参数列表
;;([10 5 1 25] 1 1 0) -> ([10 5 1 25])
[combs]
(filter coll? combs))
(defn change
;;主要的兑换过程
;; coins array of coin kinds [50 25 10 5 1]
;; money money to change n
[coins money]
(let [cm (conj coins money)] ;;[50 25 10 5 1 100]
(loop [holder [cm] ;;[[50 25 10 5 1 100]]
result 0] ;;0
(if (empty? holder)
result
(let [[f & rest] holder ;;f: [25,10,5,1,100] rest: [[50,25,10,5,1,50]]
h (change-helper f);; [[10,5,1,100] [25 10 5 1 75]]
h1 (compute h) ;; ([10,5,1,100] [25 10 5 1 75])
c (get-cur-col h1);; [[10,5,1,100] [25 10 5 1 75]]
r (get-cur-r h1)];; 0
(recur (into rest c) (+ result r)))))))
(def coins [50 25 10 5 1])
(def money 100)
(def cm [(conj coins money)])
;;(prn cm)
(def h (change-helper (first cm)))
;;(prn h)
(def h1 (compute h))
;;(prn h1)
(def c (get-cur-col h1))
;;(prn c)
(def r (get-cur-r h1))
;;(prn r)
(change coins money)
;;292
我没有验证该方法的正确性,只验证了100元的兑换方案为292种,500元有59576种,800元有343145种,1000元有801451种,如果你也实现了,还请帮我验证一下
1000元的,如果使用递归方法,可能就不行了
谢谢