指针,在C/C++语言中一直是很受宠的;几乎找不到一个不使用指针的C/C++应用。用于存储数据和程序的地址,这是指针的基本功能。用于指向整型数,用整数指针(int*);指向浮点数用浮点数指针(float*);指向结构,用对应的结构指针(struct xxx *);指向任意地址,用无类型指针(void*)。
有时候,我们需要一些通用的指针。在C语言当中,(void*) 可以代表一切;但是在C++中,我们还有一些比较特殊的指针,无法用(void*)来表示。事实上,在C++中,想找到一个通用的指针,特别是通用的函数指针可是一个“不可能任务”。
C++是一种强类型的语言,C++的编译器的功能是强大的,它的其中一个设计目标,是尽力为程序找出程序中可能存在的问题;因此,C++对类型的匹配是非常严格的。在C语言中,你可以用void*来指向一切;但在C++中,void*并不能指向一切,就算能,也没有意义,因为它不能帮你发现问题,比如,用函数指针赋值给一个数据指针。
函数指针的实质
函数对象实质上是一个实现了operator()--括号操作符--的类。
例如:
{
public:
int operator()(int a, int b)
{
return a + b;
}
};
cout << add(3,2); // 5
函数指针版本就是:
{
return a + b;
}
typedef int (*Add) (int a, int b);
cout << add(3,2); // 5
呵呵,除了定义方式不一样,使用方式可是一样的。都是:
既然函数对象与函数指针在使用方式上没什么区别,那为什么要用函数对象呢?很简单,函数对象可以携带附加数据,而指针就不行了。
下面我们来探讨一下,C++中如何存储各种类型的指针。
1. 数据指针
数据指针分为两种:常规数据指针和成员数据指针
1.1 常规数据指针 (难度: 1)
这个不用说明了,和C语言一样,很简单,直接定义、赋值就够了。常见的有:int*, double* 等等。
如:
int value = 123;
int * pn = &value;
1.2 成员数据指针 (难度: 4)
有如下的结构:
struct MyStruct
{
int key;
int value;
};
现在有一个结构对象:
MyStruct me;
我们需要 value 成员的地址,我们可以:
int * pValue = &me.value;
:) 没什么难的对吧?
我们假设一下,现在有一个结构的指针:
MyStruct* pMe = new MyStruct;
现在,我们要取得 pMe中 value 的指针,要怎么做呢?
int * ppValue = &pMe->value;
:) 这仍然很容易。
当然了,上面讨论的仍然是属于第一种范筹----常规数据指针。
好了,我们现在需要一种指针,它指向MyStruct中的任一数据成员,那么它应该是这样的子:
int MyStruct::* pMV = &MyStruct::value;
或
int MyStruct::* pMK = &MyStruct::key;
这种指针的用途是用于取得结构成员在结构内的地址。我们可以通过该指针来访问成员数据:
int value = pMe->*pMV; // 取得pMe的value成员数据。
int value = me.*pMK; // 取得me的key成员数据。
也许有人会问了,这种指针有什么用?
确实,成员指针本来就不是一种很常用的指针。不过,在某些时候还是很有用处的。我们先来看看下面的一个函数:
int sum(MyStruct* objs, int MyStruct::* pm, int count)
{
int result = 0;
for(int i = 0; i < count; ++i)
result += objs[i].*pm;
return result;
}
这个函数的功能是什么,你能看明白吗?它的功能就是,给定count个MyStruct结构的指针,计算出给定成员数据的总和。有点拗口对吧?看看下面的程序,你也许就明白了:
MyStruct me[10] =
{
{1,2},{3,4},{5,6},{7,8},{9,10},{11,12},{13,14},{15,16},{17,18},{19,20}
};
int sum_value = sum(me, &MyStruct::value, 10);
//计算10个MyStruct结构的value成员的总和: sum_value 值 为 110 (2+4+6+8+...+20)
int sum_key = sum(me, &MyStruct::key, 10);
//计算10个MyStruct结构的key成员的总和: sum_key 值 为 100 (1+3+5+7+...+19)
也许,你觉得用常规指针也可以做到,而且更易懂。Ok,没问题:
int sum_value(MyStruct* objs, int count)
{
int result = 0;
for(int i = 0; i < count; ++i)
result += objs[i].value;
return result;
}
你是想这么做吗?但这么做,你只能计算value,如果要算key的话,你要多写一个函数。有多少个成员需要计算的话,你就要写多少个函数,多麻烦啊。
C语言的指针相当的灵活方便,但也相当容易出错。许多C语言初学者,甚至C语言老鸟都很容易栽倒在C语言的指针下。但不可否认的是,指针在C语言中的位置极其重要,也许可以偏激一点的来说:没有指针的C程序不是真正的C程序。
然而C++的指针却常常给我一种束手束脚的感觉。C++比C语言有更严格的静态类型,更加强调类型安全,强调编译时检查。因此,对于C语言中最容易错用的指针,更是不能放过:C++的指针被分成数据指针,数据成员指针,函数指针,成员函数指针,而且不能随便相互转换。而且这些指针的声明格式都不一样:
数据指针 | T * |
成员数据指针 | T::* |
函数指针 | R (*)(...) |
成员函数指针 | R (T::*)(...) |
尽管C++中仍然有万能指针void*,但它却属于被批斗的对象,而且再也不能“万能”了。它不能转换成成员指针。
这样一来,C++的指针就变得很尴尬:我们需要一种指针能够指向同一类型的数据,不管这个数据是普通数据,还是成员数据;我们更需要一种指针能够指向同一类型的函数,不管这个函数是静态函数,还是成员函数。但是没有,至少从现在的C++标准中,还没有看到。
在C/C++中,数据指针是最直接,也最常用的,因此,理解起来也比较容易。而函数指针,作为运行时动态调用(比如回调函数 CallBack Function)是一种常见的,而且是很好用的手段。
我们先简单的说一下函数指针。(这一部份没什么价值,纯是为了引出下一节的内容)
2 常规函数指针
void ( * fp)();
fp 是一个典型的函数指针,用于指向无参数,无返回值的函数。
void ( * fp2)( int );
fp2 也是一个函数指针,用于指向有一个整型参数,无返回值的函数。
当然,有经验人士一般都会建议使用typedef来定义函数指针的类型,如:
typedef void ( * FP)();
FP fp3; // 和上面的fp一样的定义。
函数指针之所以让初学者畏惧,最主要的原因是它的括号太多了;某些用途的函数指针,往往会让人陷在括号堆中出不来,这里就不举例了,因为不是本文讨论的范围;typedef 方法可以有效的减少括号的数量,以及理清层次,所以受到推荐。本文暂时只考虑简单的函数指针,因此暂不用到typedef。
假如有如下两个函数:
void f1()
{
std::cout << " call f " << std::endl;
}
void f2( int a)
{
std::cout << " call f2( " << a << " ) " << std::endl;
}
现在需要通过函数指针来调用,我们需要给指针指定函数:
fp = & f1; // 也可以用:fp = f1;
fp2 = & f2; // 也可以用:fp2= f2;
void ( * fp3)() = & f1; // 也可以用:void (*fp3)() = f1;
// 调用时如下:
fp(); // 或 (*fp)();
fp2( 1 ); // 或 (*fp2)(1);
fp3(); // 或 (*fp3)();
对于此两种调用方法,效果完全一样,我推荐用前一种。后一种不仅仅是多打了键盘,而且也损失了一些灵活性。这里暂且不说它。
C++强调类型安全。也就是说,不同类型的变量是不能直接赋值的,否则轻则警告,重则报错。这是一个很有用的特性,常常能帮我们找到问题。因此,有识之士认为,C++中的任何一外警告都不能忽视。甚至有人提出,编译的时候不能出现任何警告信息,也就是说,警告应该当作错误一样处理。
比如,我们把f1赋值给fp2,那么C++编译器(vc7.1)就会报错:
fp2 = & f1; // error C2440: “=” : 无法从“void (__cdecl *)(void)”转换为“void (__cdecl *)(int)”
fp1 = & f1; // OK
这样,编译器可以帮我们找出编码上的错误,节省了我们的排错时间。
考虑一下C++标准模板库的sort函数:
// 快速排序函数
template<typename RandomAccessIterator, typename BinaryPredicate>
void sort(
RandomAccessIterator _First, // 需排序数据的第一个元素位置
RandomAccessIterator _Last, // 需排序数据的最后一个元素位置(不参与排序)
BinaryPredicate _Comp // 排序使用的比较算法(可以是函数指针、函数对象等)
);
比如,我们有一个整型数组:
int n[ 5 ] = { 3 , 2 , 1 , 8 , 9 } ;
要对它进行升序排序,我们需定义一个比较函数:
bool less( int a, int b)
{
return a < b;
}
然后用:
sort(n, n + 5 , less);
要是想对它进行降序排序,我们只要换一个比较函数就可以了。C/C++的标准模板已经提供了less和great函数,因此我们可以直接用下面的语句来比较:
sort(n, n + 5 , great);
这样,不需要改变sort函数的定义,就可以按任意方法进行排序,是不是很灵活?
这种用法以C++的标准模板库(STL)中非常流行。另外,操作系统中也经常使用回调(CallBack)函数,实际上,所谓回调函数,本质就是函数指针。
看起来很简单吧,这是最普通的C语言指针的用法。本来这是一个很美妙的事情,但是当C++来临时,世界就开始变了样。
假如,用来进行sort的比较函数是某个类的成员,那又如何呢?