题意:
给出N(<=1e5)个操作,操作分为两种,①在集合中添加一个数x,②问这个集合中mod x 的最小值是多少。(x <= 3e5)
题解:
0.首先我们发现log家族中有算法满足这道题目,那么采用分块的思想。
1.那么对于小于根号下MAX(x)的询问,直接暴力维护答案,对于大于根号MAX(x)的询问,只需要找到第一个大于等于K * x 的最小值是多少。
2.那么现在问题是维护第一个大于等于K * x(K为正整数) 的最小值是多少,现在有两种选择,①用STL中的<set> 中的 lower_bound 复杂度为logx ②用并查集充当链表 复杂度很小
代码:
/************************************************************** Problem: 4320 User: xgtao Language: C++ Result: Accepted Time:1420 ms Memory:7148 kb ****************************************************************/ #include <iostream> #include <cstring> #include <cstdio> using namespace std; const int block = 507; const int N = 3e5 + 7; char ch[2]; int pa[N], x, q[N], o[N], ans[N], mini[N], n, cnt; int find (int x) { return pa[x] == x ? x : pa[x] = find (pa[x]); } int main () { scanf ("%d", &n); memset (mini, 127, sizeof mini); for (int i = 0; i < N; ++i) pa[i] = i + 1; for (int i = 1; i <= n; ++i) { scanf ("%s%d", ch, &x); if (ch[0] == 'A') { o[i] = 1; q[i] = x; pa[x] = x; for (int i = 1; i <= block; ++i) { mini[i] = min (mini[i], x % i); } } else if (ch[0] == 'B') { o[i] = 2; q[i] = x; if (q[i] <= block) ans[i] = mini[q[i]]; } } for(int i = N - 1;i >= 0; --i) pa[i] = find(pa[i]); for (int i = n; i >= 1; --i) { if (o[i] == 1) pa[find (q[i])] = pa[find (q[i] + 1)]; else if (o[i] == 2) { if (q[i] > block) { int ret = 1e9+7; for (int j = 0; j < N; j += q[i]) { if (find (j) == N) continue; ret = min (ret, find(j) % q[i]); } ans[i] = ret; if (ret == 1e9+7) ans[i] = q[i] - 1; } } } for (int i = 1; i <= n; ++i) if (o[i] == 2) printf ("%d ", ans[i]); return 0; }
总结:
合理运用并查集当链表的性质QAQ