• 5513. 连接所有点的最小费用 kruskal


    给你一个points 数组,表示 2D 平面上的一些点,其中 points[i] = [xi, yi] 。

    连接点 [xi, yi] 和点 [xj, yj] 的费用为它们之间的 曼哈顿距离 :|xi - xj| + |yi - yj| ,其中 |val| 表示 val 的绝对值。

    请你返回将所有点连接的最小总费用。只有任意两点之间 有且仅有 一条简单路径时,才认为所有点都已连接。

    来源:力扣(LeetCode)
    链接:https://leetcode-cn.com/problems/min-cost-to-connect-all-points
    著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

    思路:标准kruskal
    注意,变量应放在solution函数内,否则样例与样例之间会没有更新。

    const int maxn = 1005;
    struct edge{
        int u, v, dis;
        edge(int u, int v, int dis) : u(u), v(v), dis(dis){}
        bool operator <(const edge &obj) const{
            return dis < obj.dis;
        }
    };
    
    int fa[maxn];
    int find(int x) {
        return x == fa[x] ? x : fa[x] = find(fa[x]);
    }
    void unionn(int x, int y) {
        int xx = find(x);
        int yy = find(y);
        fa[xx] = yy;
    }
    bool same(int x, int y) {
        return find(x) == find(y);
    }
    
    class Solution {
    public:
        int minCostConnectPoints(vector<vector<int>>& points) {
            
            int n = points.size();
          //edges应放在minCostConnectPoints内
            vector <edge> edges;
            for (int i = 0; i < n; i++) {
                fa[i] = i;
            }
    
            for (int i = 0; i < n; i++) {
                for (int j = i + 1; j < n; j++) {
                    int dis = abs(points[i][0] - points[j][0]) + abs(points[i][1] - points[j][1]);
                    edges.push_back(edge(i, j, dis));
                }
            }
    
            sort(edges.begin(), edges.end());
    
            int ans = 0;
            for (int i = 0; i < edges.size(); i++) {
                int u = edges[i].u;
                int v = edges[i].v;
                int dis = edges[i].dis;
                if (!same(u, v)) {
                    ans += dis;
                    unionn(u, v);
                }
            }
    
            return ans;
        }
    };
    

    解法2

    class Solution {
    public:
        vector <int> fa = vector <int> (1005);
        int ans = 0;
    
        int find(int x) {
            return x == fa[x] ? fa[x] : find(fa[x]);
        }
    
        void merge(int x, int y) {
            int xx = find(x);
            int yy = find(y);
            if (!connected(xx, yy)) {
                fa[yy] = xx;
            }
        }
    
        bool connected(int x, int y) {
            return find(x) == find(y);
        }
    
        typedef pair<int, int> PII;
        typedef pair<double, PII> PDP;
        priority_queue <PDP, vector<PDP>, greater<PDP>> heap;
    
        int minCostConnectPoints(vector<vector<int>>& points) {
            int n = points.size();
            for (int i = 0; i < n; i++) {
                for (int j = i + 1; j < n; j++) {
                    double dis = abs(points[i][0] - points[j][0]) + abs(points[i][1] - points[j][1]);
                    heap.push(PDP(dis,PII(i, j)));
                }
            }
    
            for (int i = 0; i < n; i++) {
                fa[i] = i;
            }
    
            while (!heap.empty()) {
                auto dis = heap.top().first;
                auto cord = heap.top().second;
                int x = cord.first;
                int y = cord.second;
                heap.pop();
    
                if (!connected(x, y)) {
                    ans += dis;
                    merge(x, y);
                }
            }
    
            return ans;
    
        }
    };
    
  • 相关阅读:
    实战练习6—水波纹制作
    实战练习5—冰块中的效果
    实战练习4—逼真眼泪
    5、选择工具&描边
    实战练习3-修饰服装皱褶
    实战练习2—方块
    实战练习1—照片的局部放大
    23、裁剪
    iOS 处理第三方SDK冲突问题
    iOS 修改启动图无效
  • 原文地址:https://www.cnblogs.com/xgbt/p/13661180.html
Copyright © 2020-2023  润新知