• 机器学习公开课笔记第四周,神经网络


    当我们用非线性假设函数n元k次方程表达逻辑回归特征值,我们的算法的效率将是( Oleft ( n^{k} ight ) )

    当特征数n和k过大时,逻辑回归的算法效率将会非常低,神经网络算法就是为了解决非线性逻辑回归算法而诞生的

     神经网络算法来源于模拟人类大脑神经,同一种神经放在不同的大脑区域可以学习各种能力,如听觉,知觉,视觉等等

    • 神经网络比较像做n次逻辑回归,每次逻辑逻辑回归之后的输出是下一次逻辑回归的输入
    • 神经网络分为三层,第一层是输入层,中间层是隐藏层,最后一层是输出层,
    • 隐藏层又可以是多层,这个层数根据用户·需要来增加和减少,越多回归越精确,但计算量越大,效率越低
    • 中间层的第j层的节点是(a_{i}^{(j)}),,第j层的参数(Theta^{(j)})是从第j层到j+1层的映射举证的权值
    •  如果神经网络第j层含有Sj个单元,第j+1含有Sj+1个单元,那么权值矩阵(Theta^{(j)})的维度是(s_{j+1} imes (s_{j} + 1))

    逻辑运算的神经网络

    当遇到多类回归时,输出层的节点个数变为类别数

    二,如何理解神经网络

     (J(Theta) = - frac{1}{m} sum_{t=1}^m sum_{k=1}^K left[ y^{(t)}_k log (h_Theta (x^{(t)}))_k + (1 - y^{(t)}_k) log (1 - h_Theta(x^{(t)})_k) ight] + frac{lambda}{2m}sum_{l=1}^{L-1} sum_{i=1}^{s_l} sum_{j=1}^{s_l+1} ( Theta_{j,i}^{(l)})^2 )

    求使代价函数 ( J(Theta) )最小的(Theta)

    既然代价函数和每个( heta)都有关,和逻辑回归就很类似,就可用解决逻辑回归的梯度下降法解决,

    1,那也就是初始化(Theta)

    2,求出关于每个代价函数(J(Theta))关于每个(Theta)的偏导( frac{partial J(Theta)}{partial Theta_{ij}^{(l)}} )

    3,(Theta_{ij}^{(l)})减去( frac{partial J(Theta)}{partial Theta_{ij}^{(l)}} )

    4,重复1-3步直到( frac{partial J(Theta)}{partial Theta_{ij}^{(l)}} ) 近似为0

    假设有如下神经网络图,输入层2个节点,隐藏层只有3节点, 输出层3节点

    在神经网络中,计算(h_{Theta}(X))的叫作前向传播算法,计算( frac{partial J(Theta)}{partial Theta_{ij}^{(l)}} )叫作后向传播算法

    由链式求导法则得( frac{partial J(Theta)}{partial Theta_{ij}^{(l)}} = frac{partial J(Theta)}{partial h_{Theta}(X)} frac{partial h_{Theta}(X)}{partial Theta_{ij}^{(l)}} )

    我们先不考虑正则法,只考虑一组数据,那么此时 

    ( frac{partial J(Theta)}{partial h_{Theta}(X)} = frac{partial - sum_{k=1}^K  left[ y_k log (h_Theta (x))_k + (1 - y_k) log (1 - h_Theta(x)_k) ight] }{partial h_{Theta}(X)} = -sum_{k=1}^K frac{partial [y_k log (h_Theta (x))_k + (1 - y_k) log (1 - h_Theta(x)_k)]}{partial h_Theta (x))_k} = sum_{k=1}^K [frac{ -y_k }{h_Theta (x)_k} + frac{1 - y_k} {1 - h_Theta(x)_k}] = sum_{k=1}^K [frac{h_Theta (x)_k - y_k}{h_Theta (x)_k (1 - h_Theta (x)_k)}])

    接着要求( frac{partial h_{Theta}(X)}{partial Theta_{ij}^{(l)}}),必须先求出 ( h_{Theta}(X)) 和(Theta_{ij}^{(l)})的关系

    先用前向传导法计算该神经网络,计算过程如下

    ( a^{(1)} = X)

    (z^{(2)} = Theta^{left ( 1 ight )} a^{(1)})

    • (z_{1}^{(2)} =  Theta_{10}^{left ( 1 ight )} a_{0}^{(1)} + Theta_{11}^{left ( 1 ight )} a_{1}^{(1)} + Theta_{12}^{left ( 1 ight )} a_{2}^{(1)}  )
    • (z_{2}^{(2)} =  Theta_{20}^{left ( 1 ight )} a_{0}^{(1)} + Theta_{21}^{left ( 1 ight )} a_{1}^{(1)} + Theta_{22}^{left ( 1 ight )} a_{2}^{(1)}  )
    • (z_{3}^{(2)} =  Theta_{30}^{left ( 1 ight )} a_{0}^{(1)} + Theta_{31}^{left ( 1 ight )} a_{1}^{(1)} + Theta_{32}^{left ( 1 ight )} a_{2}^{(1)}  )

    (a^{(2)} = g(z^{(2)}))

    (z^{(3)} = Theta^{left ( 2 ight )} a^{(2)} )

    • (z_{1}^{(3)} =  Theta_{10}^{left ( 2 ight )} a_{0}^{(2)} + Theta_{11}^{left ( 2 ight )} a_{1}^{(2)} + Theta_{12}^{left ( 2 ight )} a_{2}^{(2)} + Theta_{13}^{left ( 2 ight )} a_{3}^{(2)} )
    • (z_{2}^{(3)} =  Theta_{20}^{left ( 2 ight )} a_{0}^{(2)} + Theta_{21}^{left ( 2 ight )} a_{1}^{(2)} + Theta_{22}^{left ( 2 ight )} a_{2}^{(2)} + Theta_{23}^{left ( 2 ight )} a_{3}^{(2)} )
    • (z_{3}^{(3)} =  Theta_{30}^{left ( 2 ight )} a_{0}^{(2)} + Theta_{31}^{left ( 2 ight )} a_{1}^{(2)} + Theta_{32}^{left ( 2 ight )} a_{2}^{(2)} + Theta_{33}^{left ( 2 ight )} a_{3}^{(2)} )

    (h_{Theta}(X) = a^{(3)} = g(z^{(3)}))

    由前向传导算法可知,当l不同时,计算方法公式会不同,先计算l=2

     ( sum_{k = 1}^{K} frac{partial h_{Theta}(X)_k}{partial Theta_{ij}^{(2)}} = sum_{k = 1}^{K} [frac{partial h_{Theta}(X)_k}{partial z_k^{(3)}} frac{partial z_k^{(3)}}{partial Theta_{kj}^{(2)}}] = sum_{k = 1}^{K} frac{partial g(z_k^{(3)})}{partial z_k^{(3)}} frac{partial [Theta_{k0}^{left ( 2 ight )} a_{0}^{(2)} + Theta_{k1}^{left ( 2 ight )} a_{1}^{(2)} + Theta_{k2}^{left ( 2 ight )} a_{2}^{(2)} + Theta_{k3}^{left ( 2 ight )} a_{3}^{(2)}]}{partial Theta_{ij}^{(2)}} = (1 -  g(z_i^{(3)}))g(z_i^{(3)})a_j^{2}  )

    当k ≠ i 时, ( frac{partial [Theta_{k0}^{left ( 2 ight )} a_{0}^{(2)} + Theta_{k1}^{left ( 2 ight )} a_{1}^{(2)} + Theta_{k2}^{left ( 2 ight )} a_{2}^{(2)} + Theta_{k3}^{left ( 2 ight )} a_{3}^{(2)}]}{partial Theta_{ij}^{(2)}} = 0)

    合并之后( frac{partial J(Theta)}{partial Theta_{ij}^{(2)}} =  sum_{k = 1}^{K} [frac{partial J(Theta)}{partial h_{Theta}(X)_k} frac{partial h_{Theta}(X)_k}{partial z_k^{(3)}} frac{partial z_k^{(3)}}{partial Theta_{kj}^{(2)}}] = sum_{k=1}^K [frac{h_Theta (x)_k - y_k}{h_Theta (x)_k (1 - h_Theta (x)_k)} frac{partial g(z_k^{(3)})}{partial z_k^{(3)}} frac{partial [Theta_{k0}^{left ( 2 ight )} a_{0}^{(2)} + Theta_{k1}^{left ( 2 ight )} a_{1}^{(2)} + Theta_{k2}^{left ( 2 ight )} a_{2}^{(2)} + Theta_{k3}^{left ( 2 ight )} a_{3}^{(2)}]}{partial Theta_{ij}^{(2)}}] = sum_{k=1}^K [frac{g(z_k^{(3)}) - y_k}{g(z_k^{(3)}) (1 - g(z_k^{(3)}))}(1 -  g(z_k^{(3)}))g(z_k^{(3)}) frac{partial [Theta_{k0}^{left ( 2 ight )} a_{0}^{(2)} + Theta_{k1}^{left ( 2 ight )} a_{1}^{(2)} + Theta_{k2}^{left ( 2 ight )} a_{2}^{(2)} + Theta_{k3}^{left ( 2 ight )} a_{3}^{(2)}]}{partial Theta_{ij}^{(2)}} ] = (g(z_i^{(3)}) - y_i)a_j^{(2)} )

    设( Delta^{(l)} = frac{partial J(Theta)}{partial Theta^{(l)}} )

    那么(Delta_{ij}^{(2)} = frac{partial J(Theta)}{partial Theta_{ij}^{(2)}} = (g(z_i^{(3)}) - y_i)a_j^{(2)} = (a_i^{(3)} - y_i)a_j^{(2)})

    (Delta^{(2)})的第i行第j列(Delta_{ij}^{(2)})由 (a^{(3)} - y)的第i个数和(a^{(2)})的第j个数相乘得到,那么(Delta^{(2)} = (a^{(3)} - y) * (a^{(2)})^T)  (*表示矩阵相乘)

    接下来计算( frac{partial J(Theta)}{partial Theta_{ij}^{(1)}} )

    为了避免重复计算,设(delta^{(3)} = a^{(3)} - y)

    (frac{partial J(Theta)}{partial Theta_{ij}^1} = frac{partial J(Theta)}{partial a^{(3)}}frac{partial a^{(3)}}{partial z^{(3)}}frac{partial z^{(3)}}{partial a^{(2)}} frac{partial a^{(2)}}{partial z^{(2)}} frac{partial z^{(2)}}{partial Theta_{ij}^1} = sum_{k=1}^{k=K}[frac{partial J(Theta)}{partial a_k^{(3)}}frac{partial a_k^{(3)}}{partial z_k^{(3)}}frac{partial z_k^{(3)}}{partial a^{(2)}} frac{partial a^{(2)}}{partial z^{(2)}} frac{partial z^{(2)}}{partial Theta_{ij}^1}] = sum_{k=1}^{k=K}[(a_k^{(3)}-y_k)frac{ partial [Theta_{k0}^{left ( 2 ight )} a_{0}^{(2)} + Theta_{k1}^{left ( 2 ight )} a_{1}^{(2)} + Theta_{k2}^{left ( 2 ight )} a_{2}^{(2)} + Theta_{k3}^{left ( 2 ight )} a_{3}^{(2)}]}{partial a_{i}^{(2)}} frac{partial a_{i}^{(2)}}{partial z_{i}^{(2)}} frac{partial z_{i}^{(2)}}{partial Theta_{ij}^1}] = sum_{k=1}^{k=K}[(a_k^{(3)}-y_k)(Theta_{ki}^{(2)}) g(z_i^{(2)})(1 - g(z_i^{(2)}))a_j^{(1)}] = g(z_i^{(2)})(1 - g(z_i^{(2)}))a_j^{(1)} sum_{k=1}^{k=K}[(a_k^{(3)}-y_k)(Theta_{ki}^{(2)})] = g(z_i^{(2)})(1 - g(z_i^{(2)}))a_j^{(1)} [((Theta^{(2)})^T)_{i} * delta^{(3)}] = [((Theta^{(2)})^T)_{i} * (delta^{(3)})]g(z_i^{(2)})(1 - g(z_i^{(2)}))a_j^{(1)}) 

    (Delta_{ij}^{(1)} = (((Theta^{(2)})^T)_{i} * delta^{(3)})g(z_i^{(2)})(1 - g(z_i^{(2)}))a_j^{(1)} = (((Theta^{(2)})^T)_{i} * delta^{(3)})a_i^{(2)}(1 - a_i^{(2)})a_j^{(1)})

    (Delta^{(1)})的第i行第j列(Delta_{ij}^{(1)})由 ([((Theta^{(2)})^T) *delta^{(3)}]a^{(2)}(1 - a^{(2)}))的第i个数和(a^{(1)})的第j个数相乘得到

    为了避免重复计算,设(delta^{(2)} =((Theta^{(2)})^T * delta^{(3)})a^{(2)}(1 - a^{(2)}) )

    (Delta^{(1)} =  delta^{(2)} *  (a^{(1)})^T )

    如果还有(Delta^{(0)}),

    观察(Delta^{(1)})的推导过程,发现(frac{partial a^{(2)}}{partial z^{(2)}} frac{partial z^{(2)}}{partial Theta_{ij}^1})不受k取值的影响

    (Delta_{ij}^{(0)} = frac{partial J(Theta)}{partial Theta_{ij}^{(0)}}=sum_{k=1}^{k=K}[frac{partial J(Theta)}{partial a_k^{(3)}}frac{partial a_k^{(3)}}{partial z_k^{(3)}}frac{partial z_k^{(3)}}{partial a^{(2)}} frac{partial a^{(2)}}{partial z^{(2)}} frac{partial z^{(2)}}{partial a^{(1)}} frac{partial a^{(1)}}{partial z^{(0)}}frac{partial z^{(0)}}{partial Theta_{ij}^{(0)}}] =  delta^{(1)} frac{partial z^{(2)}}{partial a^{(1)}} frac{partial a^{(1)}}{partial z^{(0)}}frac{partial z^{(0)}}{partial Theta_{ij}^{(0)}} = (((Theta^{(1)})^T)_{i} * delta^{(2)})a_i^{(1)}(1 - a_i^{(1)})a_j^{(0)} ) 

    .....(推导过程和(Delta^{(1)})类似,在此不赘述)

    (Delta^{(0)} =  delta^{(1)} *  (a^{(0)})^T )

    我们还可以加上梯度检查(Gradient checking)来验证(frac partial {partial Theta_{ij}^{(l)}} J(Theta))的计算方法是否正确

    所谓的梯度检查用导数的定义计算导数

    ( heta^{(i+)}= heta + egin{bmatrix} 0\ 0\ ...\ epsilon \ ...\ 0 end{bmatrix} ) ,( heta^{(i-)}= heta - egin{bmatrix} 0\ 0\ ...\ epsilon \ ...\ 0 end{bmatrix} )

    按偏导的定义可得,(f_i( heta) approx frac{J( heta^{(i+)} ) - J( heta^{(i-)} )}{2epsilon } (epsilon = 1e-4) )

    如果(f_i( heta) approx frac partial {partial Theta_{ij}^{(l)}}),那算法是正确的,

    一般先找一组数据分别运行一遍前向后向传播算法和偏导定义算法,如果近似相等,那么神经网络算法算法没写错,就可以运行神经网络算法了

    总结:

    运行一遍梯度检查算法和前向后向传播算法,检查前向后向有没有写错

    for i = 1 to iteration(梯度下降次数下降次数一般大于10000)

    1 对于每组训练数据 t =1 to m:

      1),令( a^{(1)} = x(t) )

      2),运用前向传导方法计算(a^{(l)} (l = 2,3...L))

      3),令( delta^{(L)} = a^{(l)} - y(t) )

      4),运用后向传导方法计算(delta^{(L-1)},delta^{(L-2)}.....delta^{(2)}),(delta^{(l)} =((Theta^{(l)})^T * delta^{(l + 1)})a^{(l)}(1 - a^{(l)}) )

      5),(Delta_{i,j}^{(l)} =  Delta_{i,j}^{(l)} + delta_{i}^{(l + 1)} a_j^{(l)} Rightarrow  Delta^{(l)} =  Delta^{(l)} + delta^{(l + 1)} *  (a^{(l)})^T )

    2, 加上正则化

      (D^{(l)}_{i,j} := dfrac{1}{m}left(Delta^{(l)}_{i,j} + lambdaTheta^{(l)}_{i,j} ight)  (j eq 0))

      (D^{(l)}_{i,j} := dfrac{1}{m} Delta^{(l)}_{i,j} (j = 0))

    3,(frac partial {partial Theta_{ij}^{(l)}} J(Theta) = D^{(l)}_{i,j})

    4,(Theta_{i,j}^{(l)} = Theta_{i,j}^{(l)} - D^{(l)}_{i,j})

  • 相关阅读:
    【Ogre编程入门与进阶】第二章 Ogre相关知识回顾 【转载】
    Ogre1.7.2 + CEGUI0.7.5环境配置 【转载】 需要配制出自己的基础环境
    JS_模拟广告栏跟随效果
    JS_模拟电商网站放大镜效果
    JS_图片轮播事件
    JS_DOM事件之鼠标事件之随鼠标移动
    JS_DOM之小球随鼠标移动事件
    JS_DOM事件温习
    JS_原型和继承之小案例
    JS_生成随机矩形位置/矩形大小_面向对象_原型+构造函数模式
  • 原文地址:https://www.cnblogs.com/xchaos/p/6633023.html
Copyright © 2020-2023  润新知