对于积性函数,设f(n)可乘,则
[F(n)=sum _{d|n}f(d)=prod _{p^alpha ||n}(1+f(p)+...+f(p^alpha ))
]
证明有点懒得打
那么$$sigma (n)=sum _{d|n}d=prod _{p^alpha || n}(1+p+...+palpha)=frac{p_1{alpha_1 + 1} - 1}{p_1 - 1} ... frac{p_n^{alpha_n + 1} - 1}{p_n - 1}$$
对于积性函数,设f(n)可乘,则
证明有点懒得打
那么$$sigma (n)=sum _{d|n}d=prod _{p^alpha || n}(1+p+...+palpha)=frac{p_1{alpha_1 + 1} - 1}{p_1 - 1} ... frac{p_n^{alpha_n + 1} - 1}{p_n - 1}$$