Matrix Power Series
Time Limit: 3000MS | Memory Limit: 131072K | |
Total Submissions: 15739 | Accepted: 6724 |
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4 0 1 1 1
Sample Output
1 2 2 3
当k为奇数时
Sk = A + A2 + A3 + … + Ak
=(1+Ak/2)*(A + A2 + A3 + … + Ak/2 )+{Ak}
=(1+Ak/2)*(Sk/2 )+{Ak}
当k为偶数时
Sk = A + A2 + A3 + … + Ak
=(1+Ak/2)*(A + A2 + A3 + … + Ak/2 )+{Ak}
=(1+Ak/2)*(Sk/2 )
就能够二分递归求Sk
代码:
//829ms #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> using namespace std; int n,m; struct matrix { int ma[50][50]; } a; matrix multi(matrix x,matrix y)//矩阵相乘 { matrix ans; memset(ans.ma,0,sizeof(ans.ma)); for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) { if(x.ma[i][j])//稀疏矩阵优化 for(int k=1; k<=n; k++) { ans.ma[i][k]=(ans.ma[i][k]+x.ma[i][j]*y.ma[j][k])%m; } } } return ans; } matrix add(matrix x,matrix y)//矩阵相加 { for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) x.ma[i][j]=(x.ma[i][j]+y.ma[i][j])%m; return x; } matrix pow(matrix a,int m) { matrix ans; for(int i=1; i<=n; i++) //单位矩阵 { for(int j=1; j<=n; j++) { if(i==j) ans.ma[i][j]=1; else ans.ma[i][j]=0; } } while(m)//矩阵高速幂 { if(m&1) { ans=multi(ans,a); } a=multi(a,a); m=(m>>1); } return ans; } matrix solve(matrix x,int k)//递归求Sk { if(k==1) return x; matrix ans; for(int i=1; i<=n; i++) //单位矩阵 { for(int j=1; j<=n; j++) { if(i==j) ans.ma[i][j]=1; else ans.ma[i][j]=0; } } ans=add(ans,pow(x,k/2)); ans=multi(ans,solve(x,k/2)); if(k&1) ans=add(ans,pow(x,k)); return ans; } int main() { int k; while(~scanf("%d%d%d",&n,&k,&m)) { matrix ans,a; for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) scanf("%d",&a.ma[i][j]); } ans=solve(a,k); for(int i=1; i<=n; i++) { for(int j=1; j<n; j++) printf("%d ",ans.ma[i][j]); printf("%d ",ans.ma[i][n]); } } return 0; }