• LeetCode——98. 验证二叉搜索树


    给定一个二叉树,判断其是否是一个有效的二叉搜索树。

    假设一个二叉搜索树具有如下特征:

    • 节点的左子树只包含小于当前节点的数。
    • 节点的右子树只包含大于当前节点的数。
    • 所有左子树和右子树自身必须也是二叉搜索树。

    示例 1:

    输入:
        2
       / 
      1   3
    输出: true
    

    示例 2:

    输入:
        5
       / 
      1   4
         / 
        3   6
    输出: false
    解释: 输入为: [5,1,4,null,null,3,6]。
         根节点的值为 5 ,但是其右子节点值为 4 。
    

    递归

    利用其本身性质来做,初始化时带入系统最大值和最小值,在递归过程中换成它们自己的节点值,用long代替int就是为了包括int的边界条件,代码如下:

    C++

    class Solution {
    public:
        bool isValidBST(TreeNode* root) {
            return isValidBST(root, LONG_MIN, LONG_MAX);
        }
        bool isValidBST(TreeNode* root, long mn, long mx) {
            if (!root) return true;
            if (root->val <= mn || root->val >= mx) return false;
            return isValidBST(root->left, mn, root->val) && isValidBST(root->right, root->val, mx);
        }
    };
    

    Java

    public class Solution {
        public boolean isValidBST(TreeNode root) {
            if (root == null) return true;
            return valid(root, Long.MIN_VALUE, Long.MAX_VALUE);
        }
        public boolean valid(TreeNode root, long low, long high) {
            if (root == null) return true;
            if (root.val <= low || root.val >= high) return false;
            return valid(root.left, low, root.val) && valid(root.right, root.val, high);
        }
    }
    

    中序遍历

    20 20
    /
    20 20

    它们的中序遍历结果都一样,但是左边的是 BST,右边的不是 BST。去掉等号的条件则相当于去掉了这种限制条件。下面来看使用中序遍历来做,这种方法思路很直接,通过中序遍历将所有的节点值存到一个数组里,然后再来判断这个数组是不是有序的,代码如下:

    C++

    // Recursion
    class Solution {
    public:
        bool isValidBST(TreeNode* root) {
            if (!root) return true;
            vector<int> vals;
            inorder(root, vals);
            for (int i = 0; i < vals.size() - 1; ++i) {
                if (vals[i] >= vals[i + 1]) return false;
            }
            return true;
        }
        void inorder(TreeNode* root, vector<int>& vals) {
            if (!root) return;
            inorder(root->left, vals);
            vals.push_back(root->val);
            inorder(root->right, vals);
        }
    };
    

    Java

    public class Solution {
        public boolean isValidBST(TreeNode root) {
            List<Integer> list = new ArrayList<Integer>();
            inorder(root, list);
            for (int i = 0; i < list.size() - 1; ++i) {
                if (list.get(i) >= list.get(i + 1)) return false;
            }
            return true;
        }
        public void inorder(TreeNode node, List<Integer> list) {
            if (node == null) return;
            inorder(node.left, list);
            list.add(node.val);
            inorder(node.right, list);
        }
    }
    

    中序遍历改进

    跟上面那个很类似,都是用递归的中序遍历,但不同之处是不将遍历结果存入一个数组遍历完成再比较,而是每当遍历到一个新节点时和其上一个节点比较,如果不大于上一个节点那么则返回 false,全部遍历完成后返回 true。代码如下:

    C++

    class Solution {
    public:
        bool isValidBST(TreeNode* root) {
            TreeNode *pre = NULL;
            return inorder(root, pre);
        }
        bool inorder(TreeNode* node, TreeNode*& pre) {
            if (!node) return true;
            bool res = inorder(node->left, pre);
            if (!res) return false;
            if (pre) {
                if (node->val <= pre->val) return false;
            }
            pre = node;
            return inorder(node->right, pre);
        }
    };
    

    非递归

    当然这道题也可以用非递归来做,需要用到栈,因为中序遍历可以非递归来实现,所以只要在其上面稍加改动便可,代码如下:

    C++

    class Solution {
    public:
        bool isValidBST(TreeNode* root) {
            stack<TreeNode*> s;
            TreeNode *p = root, *pre = NULL;
            while (p || !s.empty()) {
                while (p) {
                    s.push(p);
                    p = p->left;
                }
                p = s.top(); s.pop();
                if (pre && p->val <= pre->val) return false;
                pre = p;
                p = p->right;
            }
            return true;
        }
    };
    

    Java

    public class Solution {
        public boolean isValidBST(TreeNode root) {
            Stack<TreeNode> s = new Stack<TreeNode>();
            TreeNode p = root, pre = null;
            while (p != null || !s.empty()) {
                while (p != null) {
                    s.push(p);
                    p = p.left;
                }
                p = s.pop();
                if (pre != null && p.val <= pre.val) return false;
                pre = p;
                p = p.right;
            }
            return true;
        }
    }
    

    Morris 遍历

    最后还有一种方法,由于中序遍历还有非递归且无栈的实现方法,称之为 Morris 遍历,这种实现方法虽然写起来比递归版本要复杂的多,但是好处在于是 O(1) 空间复杂度,参见代码如下:

    C++

    class Solution {
    public:
        bool isValidBST(TreeNode *root) {
            if (!root) return true;
            TreeNode *cur = root, *pre, *parent = NULL;
            bool res = true;
            while (cur) {
                if (!cur->left) {
                    if (parent && parent->val >= cur->val) res = false;
                    parent = cur;
                    cur = cur->right;
                } else {
                    pre = cur->left;
                    while (pre->right && pre->right != cur) pre = pre->right;
                    if (!pre->right) {
                        pre->right = cur;
                        cur = cur->left;
                    } else {
                        pre->right = NULL;
                        if (parent->val >= cur->val) res = false;
                        parent = cur;
                        cur = cur->right;
                    }
                }
            }
            return res;
        }
    };
    
  • 相关阅读:
    在为知笔记中使用JQuery
    解决Wireshark安装Npcap组件失败
    SSL/TLS抓包出现提示Ignored Unknown Record
    Metasploit中aggregator插件无法使用
    Metasploit运行环境内存不要低于2GB
    如何查看抓包文件所使用的捕获过滤器
    Nvidia的CUDA库现在恢复使用了
    Metasploit远程调用Nessus出错
    Nessus更新到8.3.0
    Kali Linux安装字典StarDict
  • 原文地址:https://www.cnblogs.com/wwj99/p/12400927.html
Copyright © 2020-2023  润新知