from openvino.inference_engine import IECore import numpy as np import time import cv2 as cv def text_detection_demo(): ie = IECore() for device in ie.available_devices: print(device) model_xml = "/home/bhc/BHC/model/intel/text-detection-0004/FP16/text-detection-0004.xml" model_bin = "/home/bhc/BHC/model/intel/text-detection-0004/FP16/text-detection-0004.bin" net = ie.read_network(model=model_xml, weights=model_bin) input_blob = next(iter(net.input_info)) text_it = iter(net.outputs) out_blob1 = next(text_it) # model/link_logits_/add #输出(1, 16, 192, 320) out_blob2 = next(text_it) # model/segm_logits/add #(1, 2, 192, 320)2:text\no-text print(out_blob1, out_blob2) n, c, h, w = net.input_info[input_blob].input_data.shape print(n, c, h, w) src = cv.imread("002.png") image = cv.resize(src, (w, h)) image = image.transpose(2, 0, 1) exec_net = ie.load_network(network=net, device_name="CPU") res = exec_net.infer(inputs={input_blob:[image]}) res = res[out_blob2] res = np.squeeze(res, 0) res = res.transpose(1, 2, 0) res = np.argmax(res, 2) hh, ww = res.shape mask = np.zeros((hh, ww), dtype=np.uint8) #灰度图像 mask[np.where(res > 0)] = 255 #text则白色 mask = cv.resize(mask, (src.shape[1], src.shape[0])) ret, binary = cv.threshold(mask, 127, 255, cv.THRESH_BINARY) #阈值二值化,大于127则255 cv.imshow("mask", binary) # result = cv.addWeighted(src, 0.5, mask, 0.5, 0) contours, hiearchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) #轮廓检测 for cnt in range(len(contours)): x, y, w, h = cv.boundingRect(contours[cnt]) #轮廓矩形 cv.rectangle(src, (x, y), (x+w, y+h), (244, 255, 0), 2, 8, 0) cv.imshow("Text Detection", src) cv.waitKey(0) if __name__ == "__main__": text_detection_demo()