• 文本轮廓检测


    from openvino.inference_engine import IECore
    import numpy as np
    import time
    import cv2 as cv
    
    
    def text_detection_demo():
        ie = IECore()
        for device in ie.available_devices:
            print(device)
    
        model_xml = "/home/bhc/BHC/model/intel/text-detection-0004/FP16/text-detection-0004.xml"
        model_bin = "/home/bhc/BHC/model/intel/text-detection-0004/FP16/text-detection-0004.bin"
    
        net = ie.read_network(model=model_xml, weights=model_bin)
        input_blob = next(iter(net.input_info))
        text_it = iter(net.outputs)
        out_blob1 = next(text_it)  # model/link_logits_/add              #输出(1, 16, 192, 320)
        out_blob2 = next(text_it)  # model/segm_logits/add               #(1, 2, 192, 320)2:text\no-text
        print(out_blob1, out_blob2)
    
        n, c, h, w = net.input_info[input_blob].input_data.shape
        print(n, c, h, w)
    
        src = cv.imread("002.png")
        image = cv.resize(src, (w, h))
        image = image.transpose(2, 0, 1)
    
        exec_net = ie.load_network(network=net, device_name="CPU")
        res = exec_net.infer(inputs={input_blob:[image]})
    
        res = res[out_blob2]                                            
        res = np.squeeze(res, 0)
        res = res.transpose(1, 2, 0)
        res = np.argmax(res, 2)
    
        hh, ww = res.shape
        mask = np.zeros((hh, ww), dtype=np.uint8)                                               #灰度图像
        mask[np.where(res > 0)] = 255                                                           #text则白色
        mask = cv.resize(mask, (src.shape[1], src.shape[0]))                            
        ret, binary = cv.threshold(mask, 127, 255, cv.THRESH_BINARY)                            #阈值二值化,大于127则255
        cv.imshow("mask", binary)
        # result = cv.addWeighted(src, 0.5, mask, 0.5, 0)
    
        contours, hiearchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)  #轮廓检测
        for cnt in range(len(contours)):
            x, y, w, h = cv.boundingRect(contours[cnt])                                         #轮廓矩形
            cv.rectangle(src, (x, y), (x+w, y+h), (244, 255, 0), 2, 8, 0)
    
        cv.imshow("Text Detection", src)
        cv.waitKey(0)
    
    
    if __name__ == "__main__":
        text_detection_demo()
    
  • 相关阅读:
    Delphi使用Indy、ICS组件读取网页
    用SendNotifyMessage代替PostMessage避免消息丢失
    LuaPlus的编译和引用
    如何转换和输出超大整数(64位)
    jQuery 源码:封装 Event
    jQuery 源码:操作样式
    jQuery 源码:元素位置
    模拟ES5 Array.prototype.reduce
    as 和 is 运算符以及安全的类型强制转换
    计算机编程基础
  • 原文地址:https://www.cnblogs.com/wuyuan2011woaini/p/15936375.html
Copyright © 2020-2023  润新知