引自:http://blog.csdn.net/acmmaxx/article/details/18409701
逆元: 若,b*b1 % c == 1 则,b1称为b模c的乘法逆元。
在ACM中,许多除法取模都要用到求逆元。 但是,逆元,为什么能给我们带来 ( a/b ) % c == ( a*b1 ) % c ???
(当然a/b要整除)
要知道,取模等式等价变形中,是没有除法的!!!
而推导式,还是没有用除法的地方!!!
我们用反证法证明:
若b*b1 % c == 1,则( a/b ) % c != ( a*b1 ) % c 若我们证明这一命题是错误的,我们目的就达到了。
令,a/b == k1*c+y1 a*b1 == k2*c+y2
原来的证明则变成了:若b*b1 % c == 1,则 y1!=y2
两式相减,有 a/b-a*b1 == (k1-k2)*c + (y1-y2)
设 k == k1-k2 y == y1-y2 有,a/b-a*b1 == k*c + y
左右乘以b,
有 a*(1-b*b1) == k*b*c + b*y
左右模上c,
左边 == a*(1-b*b1)%c
== ( a*( 1%c - b*b1%c ) )%c
== 0
右边 == (k*b*c + b*y)%c
== b*y%c
因为a/b为整除,b显然不会是0,那么y必须是0,这与命题矛盾,证毕