• 矩阵快速幂学习笔记


    其实会用快速幂已经有好长一阵子了,但是一直没有写一篇入门快速幂的笔记。

    据说,在递推式优化上具有神奇的效果(效率很高)

    两矩阵相乘,朴素算法的复杂度是O(N^3)。如果求一次矩阵的M次幂,

    按朴素的写法就是O(N^3*M)。既然是求幂,不免想到快速幂取模的算法,

    这里有快速幂取模的介绍,a^b %m 的复杂度可以降到O(logb)。

    如果矩阵相乘是不是也可以实现O(N^3 * logM)的时间复杂度呢?答案是肯定的。

      先定义矩阵数据结构: 

    struct Mat {
        double mat[N][N];
    };
    

      O(N^3)实现一次矩阵乘法

    Mat operator * (Mat a, Mat b){
        Mat c;
        memset(c.mat, 0, sizeof(c.mat));
        for(int k = 0; k < n; ++k){
            for(int i = 0; i < n; ++i){
                if(a.mat[i][k] <= 0)    continue;   //
                for(int j = 0; j < n; ++j){
                    if(b.mat[k][j] <= 0)    continue;   //
                    c.mat[i][j] += a.mat[i][k] * b.mat[k][j];
                }
            }
        }
        return c;
    }
    

      矩阵的幂运算(非常简短)

    Mat operator ^ (Mat a, int k){
        Mat c;
        for(int i = 0; i < n; ++i){
            for(int j = 0; j < n; ++j){
                c.mat[i][j] = (i == j); //init
            }
        }
        for(; k; k >>= 1){
            if(k & 1)   c = c * a;  //key, 这里需要理解一下为什么奇数时候要乘
            a = a * a;
        }
        return c;
    }
    

      

    如果还不太懂的话, 可以举个例子:

      求第n个Fibonacci数模M的值。如果这个n非常大的话,普通的递推时间复杂度为O(n),

      这样的复杂度很有可能会挂掉。这里可以用矩阵做优化,复杂度可以降到O(logn * 2^3)

    如图:

     A = F(n - 1), B = F(N - 2),

    这样使构造矩阵的n次幂乘以初始矩阵得到的结果就是

    因为是2*2的据称,所以一次相乘的时间复杂度是O(2^3),总的复杂度是O(logn * 2 ^ 3 + 2 * 2 * 1 )

    接下来贴一道题目:zoj 2853 Evolution.

  • 相关阅读:
    Falsk的模板分配和蓝图、定制错误信息、 和补充
    Flask配置文件和 路由系统
    初始Flask
    REST Framework组件的解析源码
    MdelForm 和formset
    待修改脚本
    时间打点脚本
    Move Over and Click Link
    Wait and Click Element
    Strings=newString(“xyz”);创建了几个 StringObject?
  • 原文地址:https://www.cnblogs.com/wushuaiyi/p/4311067.html
Copyright © 2020-2023  润新知