• deeplearning模型分析


    deeplearning模型分析

    FLOPs

    paddleslim.analysis.flops(programdetail=False)

    获得指定网络的浮点运算次数(FLOPs)。

    参数:

    • program(paddle.fluid.Program) - 待分析的目标网络。更多关于Program的介绍请参考:Program概念介绍
    • detail(bool) - 是否返回每个卷积层的FLOPs。默认为False。
    • only_conv(bool) - 如果设置为True,则仅计算卷积层和全连接层的FLOPs,即浮点数的乘加(multiplication-adds)操作次数。如果设置为False,则也会计算卷积和全连接层之外的操作的FLOPs。

    返回值:

    • flops(float) - 整个网络的FLOPs。
    • params2flops(dict) - 每层卷积对应的FLOPs,其中key为卷积层参数名称,value为FLOPs值。

    示例:

    import paddle.fluid as fluid
    from paddle.fluid.param_attr import ParamAttr
    from paddleslim.analysis import flops
     
    def conv_bn_layer(input,
                      num_filters,
                      filter_size,
                      name,
                      stride=1,
                      groups=1,
                      act=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False,
            name=name + "_out")
        bn_name = name + "_bn"
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
            name=bn_name + '_output',
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance', )
     
    main_program = fluid.Program()
    startup_program = fluid.Program()
    #   X       X              O       X              O
    # conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
    #     |            ^ |                    ^
    #     |____________| |____________________|
    #
    # X: prune output channels
    # O: prune input channels
    with fluid.program_guard(main_program, startup_program):
        input = fluid.data(name="image", shape=[None, 3, 16, 16])
        conv1 = conv_bn_layer(input, 8, 3, "conv1")
        conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
        sum1 = conv1 + conv2
        conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
        conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
        sum2 = conv4 + sum1
        conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
        conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
     
    print("FLOPs: {}".format(flops(main_program)))

    model_size

    paddleslim.analysis.model_size(program)

    获得指定网络的参数数量。

    参数:

    • program(paddle.fluid.Program) - 待分析的目标网络。更多关于Program的介绍请参考:Program概念介绍

    返回值:

    • model_size(int) - 整个网络的参数数量。

    示例:

    import paddle.fluid as fluid
    from paddle.fluid.param_attr import ParamAttr
    from paddleslim.analysis import model_size
     
    def conv_layer(input,
                      num_filters,
                      filter_size,
                      name,
                      stride=1,
                      groups=1,
                      act=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False,
            name=name + "_out")
        return conv
     
    main_program = fluid.Program()
    startup_program = fluid.Program()
    #   X       X              O       X              O
    # conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
    #     |            ^ |                    ^
    #     |____________| |____________________|
    #
    # X: prune output channels
    # O: prune input channels
    with fluid.program_guard(main_program, startup_program):
        input = fluid.data(name="image", shape=[None, 3, 16, 16])
        conv1 = conv_layer(input, 8, 3, "conv1")
        conv2 = conv_layer(conv1, 8, 3, "conv2")
        sum1 = conv1 + conv2
        conv3 = conv_layer(sum1, 8, 3, "conv3")
        conv4 = conv_layer(conv3, 8, 3, "conv4")
        sum2 = conv4 + sum1
        conv5 = conv_layer(sum2, 8, 3, "conv5")
        conv6 = conv_layer(conv5, 8, 3, "conv6")
     
    print("FLOPs: {}".format(model_size(main_program)))

    TableLatencyEvaluator

    classpaddleslim.analysis.TableLatencyEvaluator(table_filedelimiter="")

    基于硬件延时表的模型延时评估器。

    参数:

    • table_file(str) - 所使用的延时评估表的绝对路径。关于演示评估表格式请参考:PaddleSlim硬件延时评估表格式
    • delimiter(str) - 在硬件延时评估表中,操作信息之前所使用的分割符,默认为英文字符逗号。

    返回值:

    • Evaluator - 硬件延时评估器的实例。

    latency(graph)

    获得指定网络的预估延时。

    参数:

    • graph(Program) - 待预估的目标网络。

    返回值:

    • latency - 目标网络的预估延时。
    人工智能芯片与自动驾驶
  • 相关阅读:
    myeclipse 代码提示(alt+/)
    彻底解决mysql中文乱码
    Pycharm取消默认的右击运行unittest方法
    解决Ubuntu的root账号无法登录SSH问题-Permission denied, please try again.
    language support图标在哪里?怎么消失了?
    Ubuntu安装谷歌输入法或者搜狗
    最大流算法-ISAP
    WC2013-糖果公园
    bzoj4032-最短不公共子串
    bzoj1031-字符加密
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/14424077.html
Copyright © 2020-2023  润新知