• FIR数字滤波器设计(窗函数法) C语言实现


    背景介绍:

    理想滤波器在物理上是不可实现的,其单位脉冲响应是无限长、非因果的。窗函数法,就是从时域出发,用有限长、因果的单位脉冲响应h(n)去逼近理想滤波器的无限长、非因果的单位脉冲响应的方法。窗函数法又叫傅里叶级数法。
    更多背景资料,请看数字信号处理(李永全),P175。

    方法简介:

    设N-1阶FIR数字滤波器的单位冲击响应为h(n),则传递函数H(z)为:

    窗函数法的设计步骤如下:

    1.根据给定的理想频率响应Hd(e^jw),利用傅里叶反变换,求出单位冲击响应hd(n):

    2.将hd(n)乘以窗函数w(n),得到所要求的FIR滤波器系数h(n):

    3.求卷积:

    使用说明

    1. 子函数语句:
    void firwin(int n, int band, int wn, int fs, double h[], double kaiser=0.0, double fln=0.0, double fhn=0.0);
    
    1. 形参说明

    n:滤波器的阶数
    band:滤波器的类型,取值1-4,分别为低通、带通、带阻、高通滤波器
    wn:窗函数的类型,取值1-7,分别对应矩形窗、图基窗、三角窗、汉宁窗、海明窗、布拉克曼窗和凯塞窗
    fs:采样频率
    h:存放滤波器的系数
    kaiser:beta值
    fln:带通下边界频率
    fhn:带通上边界频率

    源代码

    void firwin(int n, int band, int wn, int fs, double h[], double kaiser, double fln, double fhn)
    {
        int i;
        int n2;
        int mid;
        double s;
        double pi;
        double wc1;
        double wc2;
        double beta;
        double delay;
        beta = kaiser;
        pi = 4.0 * atan(1.0);   //pi=PI;
        
        if ((n % 2) == 0)/*如果阶数n是偶数*/
        {
            n2 = (n / 2) - 1;/**/
            mid = 1;//
        }
        else
        {
            n2 = n / 2;//n是奇数,则窗口长度为偶数
            mid = 0;
        }
        
        delay = n / 2.0;
        wc1 = 2 * pi * fln;
        wc2 = 2 * pi * fhn;
        
        switch (band)
        {
        case 1:
        {
            for (i=0; i<=n2; ++i)
            {
                s = i - delay;
                h[i] = (sin(wc1 * s / fs) / (pi * s)) * window(wn, n+1, i, beta);//低通,窗口长度=阶数+1,故为n+1
                h[n - i] = h[i];
            }
            if (mid == 1)
            {
                h[n / 2] = wc1 / pi;//n为偶数时,修正中间值系数
            }
            break;
        }
        case 2:
        {
            for (i=0; i<=n2; i++)
            {
                s = i - delay;
                h[i] = (sin(wc2 * s / fs) - sin(wc1 * s / fs)) / (pi * s);//带通
                h[i] = h[i] * window(wn, n+1, i, beta);
                h[n-i] = h[i];
            }
            if (mid == 1)
            {
                h[n / 2] = (wc2 - wc1) / pi;
            }
            break;
        }
        case 3:
        {
            for (i=0; i<=n2; ++i)
            {
                s = i - delay;
                h[i] = (sin(wc1 * s / fs) + sin(pi * s) - sin(wc2 * s / fs)) / (pi * s);//带阻
                h[i] = h[i] * window(wn, n+1, i, beta);
                h[n - i] = h[i];
            }
            if (mid == 1)
            {
                h[n / 2] = (wc1 + pi - wc2) / pi;
            }
            break;
        }
        case 4:
        {
            for (i=0; i<=n2; i++)
            {
                s = i - delay;
                h[i] = (sin(pi * s) - sin(wc1 * s / fs)) / (pi * s);//高通
                h[i] = h[i] * window(wn, n+1, i, beta);
                h[n-i] = h[i];
            }
            if (mid == 1)
            {
                h[n / 2] = 1.0 - wc1 / pi;
            }
            break;
        }
        }
    }
    
    //n:窗口长度 type:选择窗函数的类型 beta:生成凯塞窗的系数
    static double window(int type, int n, int i, double beta)
    {
        int k;
        double pi;
        double w;
        pi = 4.0 * atan(1.0);  //pi=PI;
        w = 1.0;
    
        switch (type)
        {
        case 1:
        {
            w = 1.0;  //矩形窗
            break;
        }
        case 2:
        {
            k = (n - 2) / 10;
            if (i <= k)
            {
                w = 0.5 * (1.0 - cos(i * pi / (k + 1)));  //图基窗
            }
            if (i > n-k-2)
            {
                w = 0.5 * (1.0 - cos((n - i - 1) * pi / (k + 1)));
            }
            break;
        }
        case 3:
        {
            w = 1.0 - fabs(1.0 - 2 * i / (n - 1.0));//三角窗
            break;
        }
        case 4:
        {
            w = 0.5 * (1.0 - cos( 2 * i * pi / (n - 1)));//汉宁窗
            break;
        }
        case 5:
        {
            w = 0.54 - 0.46 * cos(2 * i * pi / (n - 1));//海明窗
            break;
        }
        case 6:
        {
            w = 0.42 - 0.5 * cos(2 * i * pi / (n - 1)) + 0.08 * cos(4 * i * pi / (n - 1));//布莱克曼窗
            break;
        }
        case 7:
        {
            w = kaiser(i, n, beta);//凯塞窗
            break;
        }
        }
        return(w);
    }
    static double kaiser(int i, int n, double beta)
    {
        double a;
        double w;
        double a2;
        double b1;
        double b2;
        double beta1;
    
        b1 = bessel0(beta);
        a = 2.0 * i / (double)(n - 1) - 1.0;
        a2 = a * a;
        beta1 = beta * sqrt(1.0 - a2);
        b2 = bessel0(beta1);
        w = b2 / b1;
        return(w);
    }
    static double bessel0(double x)
    {
        int i;
        double d;
        double y;
        double d2;
        double sum;
        y = x / 2.0;
        d = 1.0;
        sum = 1.0;
        for (i=1; i<=25; i++)
        {
            d = d * y / i;
            d2 = d * d;
            sum = sum + d2;
            if (d2 < sum*(1.0e-8))
            {
                break;
            }
        }
        return(sum);
    }
    

    得到系数之后,与输入信号求卷积即可!

  • 相关阅读:
    [GCJ2017R2]Fresh Chocolate
    李耀于NOIP2010集训出的题 Dvalue
    POI ZAW
    POI SZP
    無名(noname)
    幸运序列(lucky)
    [HNOI2001]求正整数
    灰狼呼唤着同胞(brethren)
    神在夏至祭降下了神谕(oracle)
    [bzoj 4237] 稻草人
  • 原文地址:https://www.cnblogs.com/wsl540/p/13549616.html
Copyright © 2020-2023  润新知