• dataframe转化(一)之python中的apply(),applymap(),map() 的用法和区别


    平时在处理df series格式的时候并没有注意 map和apply的差异

    总感觉没啥却别。不过还是有区别的。下面总结一下:

    import pandas as pd
    df1= pd.DataFrame({
                    "sales1":[-1,2,3],
                    "sales2":[3,-5,7],
                   })

    1.apply

    1、当我们要对数据框(DataFrame)的数据进行按行或按列操作时用apply()

    note:操作的原子是行和列 ,可以用行列统计描述符 min max mean ......

    当axis=0的时候是对“列”进行操作

    df2=df1.apply(lambda x: x.max()-x.min(),axis=0)
    print(type(df2)," ",df2)

    axis=1的时候是对“行”进行操作

    df3=df1.apply(lambda x: x.max()-x.min(),axis=1)
    print(type(df3)," ",df3)

    2.也可以直接选定一列series,或者df直接操作

    2.applymap

    1.applymap函数之后,自动对DataFrame每一个元素进行处理,判断之后输出结果

    df4=df1.applymap(lambda x: x>0)
    print(type(df4)," ",df4)

    2.applymap是对 DataFrame 进行每个元素的单独操作

       ie:不能添加列统计函数,因为是只针对单个元素的操作

    df5=df1.applymap(lambda x: x.min())
    print(type(df5),"
    ",df5)

    3.'Series' object has no attribute 'applymap'

    df4=df1["sales1"].applymap(lambda x: x>0)
    print(type(df4),"
    ",df4)

    3.map

    1.'DataFrame' object has no attribute 'map'

    df4=df1.map(lambda x: x**2)
    print(type(df4),"
    ",df4)

     2.map其实是对 列,series 等 进行每个元素的单独操作

    ie:不能添加列统计函数,因为是只针对单个元素的操作

    df3=df1["sales1"].map(lambda x: x.max()-x.min())
    print(type(df3),"
    ",df3)

     3.正常

    df4=df1["sales1"].map(lambda x: x**2)
    print(type(df4),"
    ",df4)

  • 相关阅读:
    OpenSSH免密码登录SSH2
    mysql_init调用卡住原因分析
    磁盘文件读性能测试
    madvise、fadvise、posix_madvise和posix_fadvise函数的使用
    进程间传递文件描述符fd
    Orace开源的异步IO编程库,特点是接口非常简单
    爱奇艺视频窗口显示不出来解决办法
    brk/sbrk和mmap行为分析程序
    编译boost,去掉不使用的组件
    第24课 经典问题解析二
  • 原文地址:https://www.cnblogs.com/wqbin/p/11683574.html
Copyright © 2020-2023  润新知