• 聚类(K-Means)


    import numpy as np


    # Function: K Means
    # -------------
    # K-Means is an algorithm that takes in a dataset and a constant
    # k and returns k centroids (which define clusters of data in the
    # dataset which are similar to one another).
    def kmeans(X, k, maxIt):
    numPoints, numDim = X.shape #多少数据,多少特征

    dataSet = np.zeros((numPoints, numDim + 1))#加一列
    dataSet[:, :-1] = X#赋值(所有行,除去最后一列)

    # Initialize centroids randomly
    #新的中心点
    centroids = dataSet[np.random.randint(numPoints, size=k), :]#随机选择K行 要所有列 作为中心点
    centroids = dataSet[0:2, :]
    # Randomly assign labels to initial centorid
    centroids[:, -1] = range(1, k + 1)#为选好的K个中心点(最后一列)赋值12345...K

    # Initialize book keeping vars.
    iterations = 0
    oldCentroids = None#旧的中心点

    # Run the main k-means algorithm
    while not shouldStop(oldCentroids, centroids, iterations, maxIt):
    print "iteration: ", iterations
    print "dataSet: ", dataSet
    print "centroids: ", centroids
    # Save old centroids for convergence test. Book keeping.
    oldCentroids = np.copy(centroids)
    iterations += 1

    # Assign labels to each datapoint based on centroids
    updateLabels(dataSet, centroids)#计算数据集中每一个点的属于哪个中心点

    # Assign centroids based on datapoint labels
    centroids = getCentroids(dataSet, k)#计算新的中心点

    # We can get the labels too by calling getLabels(dataSet, centroids)
    return dataSet


    # Function: Should Stop
    # -------------
    # Returns True or False if k-means is done. K-means terminates either
    # because it has run a maximum number of iterations OR the centroids
    # stop changing.
    def shouldStop(oldCentroids, centroids, iterations, maxIt):
    if iterations > maxIt:
    return True
    return np.array_equal(oldCentroids, centroids)#判断值是否相等


    # Function: Get Labels
    # -------------
    # Update a label for each piece of data in the dataset.
    def updateLabels(dataSet, centroids):
    # For each element in the dataset, chose the closest centroid.
    # Make that centroid the element's label.
    numPoints, numDim = dataSet.shape
    for i in range(0, numPoints):
    dataSet[i, -1] = getLabelFromClosestCentroid(dataSet[i, :-1], centroids)


    def getLabelFromClosestCentroid(dataSetRow, centroids):
    label = centroids[0, -1];
    minDist = np.linalg.norm(dataSetRow - centroids[0, :-1])#算两点距离的函数
    for i in range(1, centroids.shape[0]):
    dist = np.linalg.norm(dataSetRow - centroids[i, :-1])#每一行数据到中心点的距离 :-1 不算最后一列 最后一列是中心编号1234-K
    if dist < minDist:
    minDist = dist
    label = centroids[i, -1]
    print "minDist:", minDist
    return label


    # Function: Get Centroids
    # -------------
    # Returns k random centroids, each of dimension n.
    def getCentroids(dataSet, k):
    # Each centroid is the geometric mean of the points that
    # have that centroid's label. Important: If a centroid is empty (no points have
    # that centroid's label) you should randomly re-initialize it.
    result = np.zeros((k, dataSet.shape[1]))
    for i in range(1, k + 1):#所有归于一类的点求均值
    oneCluster = dataSet[dataSet[:, -1] == i, :-1]#所有数据集中归为一类的点除去最后一列
    result[i - 1, :-1] = np.mean(oneCluster, axis=0)#axis=0对所有行的列求均值得到新的中心点
    result[i - 1, -1] = i

    return result


    x1 = np.array([1, 1])
    x2 = np.array([2, 1])
    x3 = np.array([4, 3])
    x4 = np.array([5, 4])
    testX = np.vstack((x1, x2, x3, x4))

    result = kmeans(testX, 2, 10)
    print "final result:"
    print result
  • 相关阅读:
    软件工程第三次个人作业——最大连续子数组和
    LeetCode(258.各位相加)的思路及解决过程
    VS2017中对C++的单元测试
    对大学三年学习生活的总结与反思
    软件工程 实验四 代码评审
    软件工程 实验二
    2020软件工程最后一次作业
    软件工程第四次作业(第二次结对)
    软件工程第三次作业
    软件工程第二次作业:最大字段和
  • 原文地址:https://www.cnblogs.com/wlc297984368/p/7470464.html
Copyright © 2020-2023  润新知