import numpy as np
# Function: K Means
# -------------
# K-Means is an algorithm that takes in a dataset and a constant
# k and returns k centroids (which define clusters of data in the
# dataset which are similar to one another).
def kmeans(X, k, maxIt):
numPoints, numDim = X.shape #多少数据,多少特征
dataSet = np.zeros((numPoints, numDim + 1))#加一列
dataSet[:, :-1] = X#赋值(所有行,除去最后一列)
# Initialize centroids randomly
#新的中心点
centroids = dataSet[np.random.randint(numPoints, size=k), :]#随机选择K行 要所有列 作为中心点
centroids = dataSet[0:2, :]
# Randomly assign labels to initial centorid
centroids[:, -1] = range(1, k + 1)#为选好的K个中心点(最后一列)赋值12345...K
# Initialize book keeping vars.
iterations = 0
oldCentroids = None#旧的中心点
# Run the main k-means algorithm
while not shouldStop(oldCentroids, centroids, iterations, maxIt):
print "iteration:
", iterations
print "dataSet:
", dataSet
print "centroids:
", centroids
# Save old centroids for convergence test. Book keeping.
oldCentroids = np.copy(centroids)
iterations += 1
# Assign labels to each datapoint based on centroids
updateLabels(dataSet, centroids)#计算数据集中每一个点的属于哪个中心点
# Assign centroids based on datapoint labels
centroids = getCentroids(dataSet, k)#计算新的中心点
# We can get the labels too by calling getLabels(dataSet, centroids)
return dataSet
# Function: Should Stop
# -------------
# Returns True or False if k-means is done. K-means terminates either
# because it has run a maximum number of iterations OR the centroids
# stop changing.
def shouldStop(oldCentroids, centroids, iterations, maxIt):
if iterations > maxIt:
return True
return np.array_equal(oldCentroids, centroids)#判断值是否相等
# Function: Get Labels
# -------------
# Update a label for each piece of data in the dataset.
def updateLabels(dataSet, centroids):
# For each element in the dataset, chose the closest centroid.
# Make that centroid the element's label.
numPoints, numDim = dataSet.shape
for i in range(0, numPoints):
dataSet[i, -1] = getLabelFromClosestCentroid(dataSet[i, :-1], centroids)
def getLabelFromClosestCentroid(dataSetRow, centroids):
label = centroids[0, -1];
minDist = np.linalg.norm(dataSetRow - centroids[0, :-1])#算两点距离的函数
for i in range(1, centroids.shape[0]):
dist = np.linalg.norm(dataSetRow - centroids[i, :-1])#每一行数据到中心点的距离 :-1 不算最后一列 最后一列是中心编号1234-K
if dist < minDist:
minDist = dist
label = centroids[i, -1]
print "minDist:", minDist
return label
# Function: Get Centroids
# -------------
# Returns k random centroids, each of dimension n.
def getCentroids(dataSet, k):
# Each centroid is the geometric mean of the points that
# have that centroid's label. Important: If a centroid is empty (no points have
# that centroid's label) you should randomly re-initialize it.
result = np.zeros((k, dataSet.shape[1]))
for i in range(1, k + 1):#所有归于一类的点求均值
oneCluster = dataSet[dataSet[:, -1] == i, :-1]#所有数据集中归为一类的点除去最后一列
result[i - 1, :-1] = np.mean(oneCluster, axis=0)#axis=0对所有行的列求均值得到新的中心点
result[i - 1, -1] = i
return result
x1 = np.array([1, 1])
x2 = np.array([2, 1])
x3 = np.array([4, 3])
x4 = np.array([5, 4])
testX = np.vstack((x1, x2, x3, x4))
result = kmeans(testX, 2, 10)
print "final result:"
print result