参考链接:http://blog.csdn.net/lingerlanlan/article/details/32329761
RNN神经网络:http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/detection.ipynb
官方链接:http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/classification.ipynb
参考链接:http://suanfazu.com/t/caffe-shen-du-xue-xi-kuang-jia-shang-shou-jiao-cheng/281/3
模型定义中有一点比较容易被误解,信号在有向图中是自下而上流动的,并不是自上而下。
层的结构定义如下:
1 name:层名称 2 type:层类型 3 top:出口 4 bottom:入口
Each layer type defines three critical computations: setup, forward, andbackward.
- Setup: initialize the layer and its connections once at model initialization.
- Forward: given input from bottom compute the output and send to the top.
- Backward: given the gradient w.r.t. the top output compute the gradient w.r.t. to the input and send to the bottom. A layer with parameters computes the gradient w.r.t. to its parameters and stores it internally.
/home/wishchin/caffe-master/examples/hdf5_classification/train_val2.prototxt
name: "LogisticRegressionNet" layer { name: "data" type: "HDF5Data" top: "data" top: "label" include { phase: TRAIN } hdf5_data_param { source: "hdf5_classification/data/train.txt" batch_size: 10 } } layer { name: "data" type: "HDF5Data" top: "data" top: "label" include { phase: TEST } hdf5_data_param { source: "hdf5_classification/data/test.txt" batch_size: 10 } } layer { name: "fc1" type: "InnerProduct" bottom: "data" top: "fc1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 40 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1" type: "ReLU" bottom: "fc1" top: "fc1" } layer { name: "fc2" type: "InnerProduct" bottom: "fc1" top: "fc2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "fc2" bottom: "label" top: "loss" } layer { name: "accuracy" type: "Accuracy" bottom: "fc2" bottom: "label" top: "accuracy" include { phase: TEST } }
关于参数与结果的关系:多次训练效果一直在0.7,后来改动了全链接层的初始化参数。高斯分布的标准差由0.001改为0.0001,就是调小了。
我的结果有点相似。