Let's call an array arr
a mountain if the following properties hold:
arr.length >= 3
- There exists some
i
with0 < i < arr.length - 1
such that:arr[0] < arr[1] < ... arr[i-1] < arr[i]
arr[i] > arr[i+1] > ... > arr[arr.length - 1]
Given an integer array arr
that is guaranteed to be a mountain, return any i
such that arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
.
Example 1:
Input: arr = [0,1,0] Output: 1
Example 2:
Input: arr = [0,2,1,0] Output: 1
Example 3:
Input: arr = [0,10,5,2] Output: 1
Example 4:
Input: arr = [3,4,5,1] Output: 2
Example 5:
Input: arr = [24,69,100,99,79,78,67,36,26,19] Output: 2
Constraints:
3 <= arr.length <= 104
0 <= arr[i] <= 106
arr
is guaranteed to be a mountain array.
Follow up: Finding the O(n)
is straightforward, could you find an O(log(n))
solution?
class Solution { public int peakIndexInMountainArray(int[] arr) { for(int i = 1; i < arr.length - 1; i++) { if(arr[i] > arr[i - 1] && arr[i] > arr[i + 1]) return i; } return -1; } }
O(n)就直接写,O(logn)就二分法。
class Solution { public int peakIndexInMountainArray(int[] arr) { int l = 0, r = arr.length - 1; while(l < r) { int m = l + (r - l) / 2; if(arr[m] < arr[m + 1]) l = m + 1; else r = m; } return l; } }
判断的不再是m和l、r,而是m和m+1,比如1,2,3,4,1,
如果m 《 m+1,说明l 到 m 都是递增的,peak一定在m右边,l = m + 1.
否则r = m。
最后返回的是l。