• 1038. Binary Search Tree to Greater Sum Tree


    1038. Binary Search Tree to Greater Sum Tree

    Given the root of a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original BST is changed to the original key plus sum of all keys greater than the original key in BST.

    As a reminder, a binary search tree is a tree that satisfies these constraints:

    • The left subtree of a node contains only nodes with keys less than the node's key.
    • The right subtree of a node contains only nodes with keys greater than the node's key.
    • Both the left and right subtrees must also be binary search trees.

    Note: This question is the same as 538: https://leetcode.com/problems/convert-bst-to-greater-tree/

    Example 1:

    Input: root = [4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
    Output: [30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]
    

    Example 2:

    Input: root = [0,null,1]
    Output: [1,null,1]
    

    Example 3:

    Input: root = [1,0,2]
    Output: [3,3,2]
    

    Example 4:

    Input: root = [3,2,4,1]
    Output: [7,9,4,10]
    

    Constraints:

    • The number of nodes in the tree is in the range [1, 100].
    • 0 <= Node.val <= 100
    • All the values in the tree are unique.
    • root is guaranteed to be a valid binary search tree.
    class Solution {
        int pre = 0;
        public TreeNode bstToGst(TreeNode root) {
            if(root == null) return null;
            if(root.right != null) bstToGst(root.right);
            pre = root.val + pre;
            root.val = pre;
            if(root.left != null) bstToGst(root.left);
            return root;
        }
    }

    因为要小的变成所有比他大的root之和,所以需要reverse inorder,右根左。根的时候更新pre和当前root的val,最后返回root。

  • 相关阅读:
    [poj3974] Palindrome 解题报告 (hashmanacher)
    SQL Android
    SharedPreferences Android
    本地广播 localBroadcastManager Android
    RecyclerView Android
    自定义ListView Android
    布局 Android
    传值 Android
    活动的生命周期 Android
    CodeForces 907F Power Tower(扩展欧拉定理)
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/14394874.html
Copyright © 2020-2023  润新知