• poj1981 Circle and Points


    地址:http://poj.org/problem?id=1981

    题目:

    Circle and Points
    Time Limit: 5000MS   Memory Limit: 30000K
    Total Submissions: 8198   Accepted: 2924
    Case Time Limit: 2000MS

    Description

    You are given N points in the xy-plane. You have a circle of radius one and move it on the xy-plane, so as to enclose as many of the points as possible. Find how many points can be simultaneously enclosed at the maximum. A point is considered enclosed by a circle when it is inside or on the circle. 
     
    Fig 1. Circle and Points

    Input

    The input consists of a series of data sets, followed by a single line only containing a single character '0', which indicates the end of the input. Each data set begins with a line containing an integer N, which indicates the number of points in the data set. It is followed by N lines describing the coordinates of the points. Each of the N lines has two decimal fractions X and Y, describing the x- and y-coordinates of a point, respectively. They are given with five digits after the decimal point. 

    You may assume 1 <= N <= 300, 0.0 <= X <= 10.0, and 0.0 <= Y <= 10.0. No two points are closer than 0.0001. No two points in a data set are approximately at a distance of 2.0. More precisely, for any two points in a data set, the distance d between the two never satisfies 1.9999 <= d <= 2.0001. Finally, no three points in a data set are simultaneously very close to a single circle of radius one. More precisely, let P1, P2, and P3 be any three points in a data set, and d1, d2, and d3 the distances from an arbitrarily selected point in the xy-plane to each of them respectively. Then it never simultaneously holds that 0.9999 <= di <= 1.0001 (i = 1, 2, 3). 

    Output

    For each data set, print a single line containing the maximum number of points in the data set that can be simultaneously enclosed by a circle of radius one. No other characters including leading and trailing spaces should be printed.

    Sample Input

    3
    6.47634 7.69628
    5.16828 4.79915
    6.69533 6.20378
    6
    7.15296 4.08328
    6.50827 2.69466
    5.91219 3.86661
    5.29853 4.16097
    6.10838 3.46039
    6.34060 2.41599
    8
    7.90650 4.01746
    4.10998 4.18354
    4.67289 4.01887
    6.33885 4.28388
    4.98106 3.82728
    5.12379 5.16473
    7.84664 4.67693
    4.02776 3.87990
    20
    6.65128 5.47490
    6.42743 6.26189
    6.35864 4.61611
    6.59020 4.54228
    4.43967 5.70059
    4.38226 5.70536
    5.50755 6.18163
    7.41971 6.13668
    6.71936 3.04496
    5.61832 4.23857
    5.99424 4.29328
    5.60961 4.32998
    6.82242 5.79683
    5.44693 3.82724
    6.70906 3.65736
    7.89087 5.68000
    6.23300 4.59530
    5.92401 4.92329
    6.24168 3.81389
    6.22671 3.62210
    0
    

    Sample Output

    2
    5
    5
    11
    

    Source

    思路:

      n^2logn的思路挺巧的,首先枚举每个点P,然后枚举其他点Q,算出以P为圆心和以Q为圆心的重叠部分,显然重叠部分最多的地方就是放圆心的最好位置。

      求重叠次数是通过与两圆相交的交点构成的圆弧来判断的。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cmath>
     4 #include <algorithm>
     5 
     6 
     7 using namespace std;
     8 const double PI = acos(-1.0);
     9 const double eps = 1e-10;
    10 
    11 /****************常用函数***************/
    12 //判断ta与tb的大小关系
    13 int sgn( double ta, double tb)
    14 {
    15     if(fabs(ta-tb)<eps)return 0;
    16     if(ta<tb)   return -1;
    17     return 1;
    18 }
    19 
    20 //
    21 class Point
    22 {
    23 public:
    24 
    25     double x, y;
    26 
    27     Point(){}
    28     Point( double tx, double ty){ x = tx, y = ty;}
    29 
    30 };
    31 
    32 /****************常用函数***************/
    33 
    34 //两点间距离的平方
    35 double getdis2(const Point &st,const Point &se)
    36 {
    37     return (st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y);
    38 }
    39 //两点间距离
    40 double getdis(const Point &st,const Point &se)
    41 {
    42     return sqrt((st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y));
    43 }
    44 
    45 Point pt[500],pp[700];
    46 
    47 bool cmp(const Point &ta,const Point &tb)
    48 {
    49     return sgn(ta.x,tb.x)!=0?ta.x<tb.x:ta.y>tb.y;
    50 }
    51 int main(void)
    52 {
    53     //freopen("in.acm","r",stdin);
    54     int n;
    55     while(~scanf("%d",&n)&&n)
    56     {
    57         int ans=1;
    58         for(int i=1;i<=n;i++)
    59             scanf("%lf%lf",&pt[i].x,&pt[i].y);
    60         for(int i=1;i<=n;i++)
    61         {
    62             int cnt=0,tot=1;;
    63             for(int j=1;j<=n;j++)
    64             if(i!=j)
    65             {
    66                 double d = getdis(pt[i],pt[j]) / 2.0;
    67                 if(sgn(d,1)>0) continue;
    68                 double ag = atan2(pt[j].y-pt[i].y,pt[j].x-pt[i].x);
    69                 d = acos(d);
    70                 pp[cnt].x = ag - d, pp[cnt++].y = 1;
    71                 pp[cnt].x = ag + d, pp[cnt++].y = -1;
    72             }
    73             sort(pp,pp+cnt,cmp);
    74             for(int j=0;j<cnt;j++)
    75             if(pp[j].y>0)
    76                 ans=max(ans,++tot);
    77             else
    78                 tot--;
    79         }
    80         printf("%d
    ",ans);
    81     }
    82     return 0;
    83 }
  • 相关阅读:
    一起谈.NET技术,Silverlight中二维变换详解 狼人:
    一起谈.NET技术,通过16道练习学习Linq和Lambda 狼人:
    一起谈.NET技术,技巧:使用可扩展对象模式扩展HttpApplication 狼人:
    一起谈.NET技术,ASP.NET的运行原理与运行机制 狼人:
    一起谈.NET技术,.NET远程处理框架详解 狼人:
    一起谈.NET技术,从原理来看Silverlight 4的架构 狼人:
    一起谈.NET技术,ASP.NET MVC中对Model进行分步验证的解决方法 狼人:
    一起谈.NET技术,解决编程中序列化问题 狼人:
    一起谈.NET技术,asp.net控件开发基础(2) 狼人:
    一起谈.NET技术,asp.net控件开发基础(1) 狼人:
  • 原文地址:https://www.cnblogs.com/weeping/p/7655975.html
Copyright © 2020-2023  润新知