• Redis07——Redis到底能用在什么地方(下)


    在前一篇文章中,我们已经介绍过Redis的一些实际应用。如KV缓存、分布式锁、消息队列,由于篇幅原因,并未介绍完全。接下来将继续为各位带来Redis的更多应用。

    bitmat(位图)

    实现

    位图的基本思想是使用一个bit来表示一个映射关系,这样就能大大减小内存的使用。如一个用户一周的签到情况可以用以下方式来实现。

    位图.png

    如果不用位图,而用int 来实现的话,需要7个int的空间来存储,而使用位图后,一个int空间即可表示出用户一周的签到情况了。

    常用指令

    1. setbit:设置位图值;
    127.0.0.1:6379> setbit bitmapkey 2 1 # 指定数组位
    (integer) 0
    
    127.0.0.1:6379> setbit bitmapkeyk javamd # 不指定数组位
    (integer) 0
    

    Redis位数组是自动扩展的,如果设置了超出现有内容范围的位值,将会对位数组进行自动填充零的处理。

    1. getbit:获取位图值;
    127.0.0.1:6379> getbit bitmapkey 2 # 指定数组位
    (integer) 1
    
    127.0.0.1:6379> getbit bitmapkeyk # 不指定数组位
    "javamd"
    
    1. bitcount:位图统计;
    127.0.0.1:6379> bitcount key 0 0 # 第一个字符串中1的位数
    (integer) 1
    
    1. bitpos:位图查找;
    127.0.0.1:6379> bitpos key 0 # 第一个0的位数
    (integer) 3
    127.0.0.1:6379> bitpos key 1 1 1 # 从第二个字符算起,第一个1位
    (integer) 3
    
    1. bitfield:位图管道处理;bitfield有三个子指令,get、set、incrby,可以对指定位片段进行操作,单个指令最多只能处理64个连续位。

    应用场景:用户签到、用户画像标签、大量整数排序等场景。

    HyperLogLog

    原理

    • 伯努利实验 :一次伯努利实验,抛硬币不管进行抛掷次数多少次,只要出现一个正面,就称之为为一次伯努利实验。伯努利实验存在一个关系:n = 2^(k_max) (n:伯努利实验次数,k_max: 抛掷次数最大的次数)。

    • 比特串:hash(key) = 比特串。通过取模、前m位比特值转化为十进制等方式,确定在哪个桶内。

    • 分桶:分桶是为了减少偶然误差性,可以理解为解决hash算法的hash冲突,分桶越多,误差越小。

    Redis中HyperLogLog用了16384个桶,即2^ 14,每个桶的k_max需要6个bit来存储,最大可以表示maxbits=63,一个HyperLogLog总内存占用量为(2^14)*6/8 = 12KB。

    常用指令

    1. pfadd:添加基数;
    2. pfcount:统计基础数量;
    3. pfmerge:合并pf基数,形成一个新的pf。

    应用场景

    Redis HyperLogLog 的应用有以下特点:

    • 如果基数不大或数据量不大就不太适用,会有点大材小用浪费空间;
    • 有一定局限性——只能统计基数数量,而没办法去知道具体的内容是什么;
    • 和bitmap相比,属于两种特定统计情况,简单来说,HyperLogLog 去重比 bitmap 方便很多;
    • 一般可以bitmap和HyperLogLog配合使用,bitmap标识哪些用户活跃,HyperLogLog计数。

    使用场景有以下场景:

    • 统计注册 IP 数;
    • 统计每日访问 IP 数;
    • 统计页面实时 UV 数;
    • 统计在线用户数。

    Bloom Filter (布隆过滤器)

    Redis从4.0起,开始支持Boolm Filter这种高级数据结构。

    实现

    布隆过滤器实际上就是由一个大型位数组和几个不一样的的无偏hash函数组成。

    布隆过滤器.png

    添加key步骤:

    1. 添加key时,会用多个hash函数对key进行hash取值;
    2. 然后用数组长度对hash值进行取模运算,得到对应的位置,每个hash函数都会得到一个不一样的位置;
    3. 同时对相应位置进行置1操作,即完成add操作。

    查询key是否存在时,与add操作一致,查询对应位是否为1即可。如果有一个不为1,则说明key不存在,如果都为1,则说明key可能存在。key可能存在是因为,受数组长度影响产生的hash冲突,导致key可能存在。

    建议

    • 使用时不要让实际元素远大于初始化大小;
    • 当实际元素开始超出初始化大小时,应该重新分配一个 size 更大的过滤器。

    应用场景

    布隆过滤器可以用在以下场景:

    • 查询用户是否已经看过某条新闻;
    • 爬虫系统中,对URL进行去重操作;
    • 邮箱垃圾邮件过滤;
    • 防止缓存穿透(即一直在库里查询某个不存在的key,影响数据库性能)。

    Geo

    在地理位置中查询附近的点时,我们可以使用Redis的Geo模块来解决这一问题。

    数据库查询附近的点

    当两个地理坐标相差不是很远的情况下,我们可以使用勾股定理来计算元素间的距离。

    通过数据库,当给定一个坐标,查询附近的其他地理点时,我们可以先选定指定一个半径范围,然后筛选出该半径范围内所有的坐标点,对坐标点与目标点进行勾股定理算距排序。

    GeoHash算法

    当高并发场景,数据库筛选的方法并不合适,这时我们可以使用Redis的Geo模块来解决这一问题。

    算法实现:GeoHash算法,将地球表面看做一个平面,然后划分成等分的小方格(划分越小,坐标位置精度越高),将方格转换为二位数组来表示,如00,01,02…0n,10,11,12…1n,n0,n1,n2……nn。这样每一个坐标,都能用一个整数来表示,通过这个整数,就能还原出元素的坐标。GeoHash算法再将这个整数进行base32编码。

    在Redis中,经纬度用52位整数进行编码,然后放入zset中。zset的value是元素id,score是52位整数值。通过zset的score排序,就可以得到指定坐标附近的其他元素。通过score即可将整数还原成具体的坐标值。

    注意事项

    在使用Redids 的Geo实现附近的人需要注意,由于该结构需要较大的内存,所以建议使用单独的Redis实例,不建议做主从复制。同时可以根据数据量按地理行政级别进行拆分。

    限流

    在Redis中,可以根据实际情况使用以下方式实现限流。

    zset

    对于系统限定某个用户的某个行为在一定时间内只能发生N次的情况,可以使用zset进行限流。

    实现:将用户ID与动作key当做zset的key,使用时间戳,当zset的score,value保证唯一性即可。然后根据score圈定指定时间范围内的value,这样就能实现限定某个用户的某个行为在一定时间内只能发生N次的限流需求。

    应用:zset限流可以用于以下情况:

    • 用户行为限流;
    • 数据推送频次限流。

    Redis-Cell(漏斗限流)

    Redis-Cell采用的是漏斗限流,漏斗容量是有限的,同时漏斗口大小是有限的,即有一个漏水速率。通过漏斗容量,漏斗速率,漏斗剩余空间,上一次漏水时间,我们就能实现一个完整的漏斗算法。Redis中初始化Redis-Cell方法如下:

    # 限制用户在60秒时间内只能回复30次(漏水速率为30次/60S)
    127.0.0.1:6379>cl.throttle keykey 15 30 60 1
    1) (integer) 0   # 0 表示允许,1 表示拒绝
    2) (integer) 15  # 漏斗容量
    3) (integer) 14  # 漏斗剩余空间
    4) (integer) -1  # 如果被拒绝了,需要多长时间再试
    5) (integer) 2   # 多长时间后,漏斗能完全空出来
    

    Redis系列推荐

    Redis06——Redis到底能用在什么地方(上)

    Redis05——Redis Cluster 如何实现分布式集群

    Redis04——五分钟明白Redis的哨兵模式

    Redis03——Redis是如何删除你的数据的

    Redis02——Redis内存数据如何保存到磁盘

    Redis01——Redis究竟支持哪些数据结构

  • 相关阅读:
    《JSP2.0 技术手册》读书笔记六JSP语法与EL
    《Spring 2.0技术手册》读书笔记一Spring与eclipse的结合
    二元查找树转为双向链表
    《Jsp2.0技术手册》读书笔记补充web.xml详解及listener,filter,servlet加载顺序
    《JSP2.0技术手册》读书笔记三Filter
    《Spring2.0技术手册》读书笔记二理念
    Swift构造器链
    Swift函数_外部参数名,
    Swift数据类型_整型和浮点型
    Swift函数_默认参数
  • 原文地址:https://www.cnblogs.com/weechang/p/12457656.html
Copyright © 2020-2023  润新知