题面
给定$n,m$,求:
$$
T(n)=sum_{i=1}^ni imes f_i
$$
其中$f_i$为斐波那契数列的第$i$项
题解
不妨设:
$$
S(n)=sum_{i=1}^nf_i
$$
则可以设:
$$
P(n)=nS(n)-T(n)=sum_{i=1}^{n-1}(n-i) imes f_i
$$
所以有:
$$
P(n+1)=sum_{i=1}^{n}(n+1-i) imes f_i=sum_{i=1}^n(n-i) imes f_i+sum_{i=1}^nf_i
=sum_{i=1}^{n-1}(n-i) imes f_i+0 imes f_n+S(n)=P(n)+S(n)
$$
然后就可以用矩阵乘法加速递推了。
#include <cstdio>
#include <cstring>
int n, m;
struct Matrix {
int a[4][4];
Matrix() { memset(a, 0, sizeof a); }
inline int* operator [] (const int &x) { return a[x]; }
inline Matrix operator * (Matrix &b) const {
Matrix ret;
for(int i = 0; i < 4; ++i)
for(int k = 0; k < 4; ++k)
for(int j = 0; j < 4; ++j)
(ret[i][j] += 1ll * a[i][k] * b[k][j] % m) %= m;
return ret;
}
} S, T;
int main () {
scanf("%d%d", &n, &m); int k = n;
S[0][1] = 1;
T[0][0] = T[0][1] = T[0][2] = 1;
T[1][0] = T[1][2] = 1;
T[2][2] = T[2][3] = 1;
T[3][3] = 1;
while(k) {
if(k & 1) S = S * T;
T = T * T, k >>= 1;
}
printf("%lld
", (1ll * n * S[0][2] % m + m - S[0][3]) % m);
return 0;
}