• 【洛谷】1081:跑路【倍增】【最短路】


    P1613 跑路

    题目描述

    小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。

    输入输出格式

    输入格式:

    第一行两个整数n,m,表示点的个数和边的个数。

    接下来m行每行两个数字u,v,表示一条u到v的边。

    输出格式:

    一行一个数字,表示到公司的最少秒数。

    输入输出样例

    输入样例#1: 复制
    4 4
    1 1
    1 2
    2 3
    3 4
    
    输出样例#1: 复制
    1

    说明

    【样例解释】

    1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。

    【数据范围】

    50%的数据满足最优解路径长度<=1000;

    100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。


    倍增+最短路。
    数据范围明显暗示最短路可以用$floyed$,可是除了一开始给出的两点间的距离可以用时间1达到,怎么处理出其它可以用时间1到达的点呢?
    定义$vis[i][j][p]$表示$i$到$j$之间的路径存不存在长度为$2^p$的,再加上$floyed$的思想,$vis[i][j][p]$可以从$vis[i][k][p-1]$和$vis[k][j][p-1]$转移过来。如果可以转移,$i$到$j$的时间就可以为1。
    最后再用一遍$floyed$处理最小时间就可以了。
    #include<bits/stdc++.h>
    #define LL long long
    using namespace std;
    
    int n, m;
    int G[55][55], vis[55][55][65];
    int main() {
        scanf("%d%d", &n, &m);
        memset(G, 0x3f3f3f3f, sizeof(G));
        for(int i = 1; i <= n; i ++)    G[i][i] = 0;
        for(int i = 1; i <= m; i ++) {
            int a, b;
            scanf("%d%d", &a, &b);
            G[a][b] = 1;
            vis[a][b][0] = 1;
        }
        for(int p = 1; p <= 63; p ++)
            for(int k = 1; k <= n; k ++)
                for(int i = 1; i <= n; i ++)
                    for(int j = 1; j <= n; j ++)
                        if(vis[i][k][p-1] && vis[k][j][p-1]) {
                            vis[i][j][p] = 1;
                            G[i][j] = 1;
                        }
        for(int k = 1; k <= n; k ++)
            for(int i = 1; i <= n; i ++)
                for(int j = 1; j <= n; j ++) {
                    G[i][j] = min(G[i][k] + G[k][j], G[i][j]);
                }
        printf("%d", G[1][n]);
        return 0;
    }
     
  • 相关阅读:
    Linux Cannot allocate memory问题
    Linux后台运行Jar方法
    盒模型:外边距叠加和外边距为负值
    HTML如何创建二级目录
    css3实现立方体,并且自转效果
    前台技术--页面跳转的几种用法
    JS实现网站内容的禁止复制和粘贴、另存为
    网络爬虫大白话解析
    HTML5 canvas绘制arcTo、translate和rotate的画法探索
    HTML5实战与剖析之原生拖拽(一拖拽历史概述)
  • 原文地址:https://www.cnblogs.com/wans-caesar-02111007/p/9755754.html
Copyright © 2020-2023  润新知