1. HashMap的数据结构
数据结构中有数组和链表来实现对数据的存储,但这两者基本上是两个极端。
数组
数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难;
链表
链表存储区间离散,占用内存比较宽松,故空间复杂度很小,但时间复杂度很大,达O(N)。链表的特点是:寻址困难,插入和删除容易。
哈希表
那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表。哈希表((Hash table)既满足了数据的查找方便,同时不占用太多的内容空间,使用也十分方便。
哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法—— 拉链法,我们可以理解为“链表的数组” ,如图:
HashMap其实也是一个线性的数组实现的,所以可以理解为其存储数据的容器就是一个线性数组。这可能让我们很不解,一个线性的数组怎么实现按键值对来存取数据呢?这里HashMap有做一些处理。
首先HashMap里面实现一个静态内部类Entry,其重要的属性有 key , value, next,从属性key,value我们就能很明显的看出来Entry就是HashMap键值对实现的一个基础bean,我们上面说到HashMap的基础就是一个线性数组,这个数组就是Entry[],Map里面的内容都保存在Entry[]里面。
transient Entry[] table;
Entry的构造函数
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
HashMap里面用到链式数据结构的一个概念。上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。打个比方, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起。所以疑问不用担心。也就是说数组中存储的是最后插入的元素。到这里为止,HashMap的大致实现,我们应该已经清楚了。
2. HashMap的具体实现
package java.util;
import java.io.*;
publicclass HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
/*
HashMap 的实例有两个参数影响其性能:初始容量 和加载因子。
容量是哈希表中桶的数量,初始容量只是哈希表在创建时的容量。
加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度。
当哈希表中的条目数超出了加载因子与当前容量的乘积时,
则要对该哈希表进行 rehash 操作(即重建内部数据结构),
从而哈希表将具有大约两倍的桶数。
加载因子默认值为0.75,默认哈希表容量为16
*/
//初始化容量16 hashMap的容量必须是2的指数倍,Hashtable是11
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//最大容量2的30次方
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认加载因子默认的平衡因子为0.75,这是权衡了时间复杂度与空间复杂度之后的最好取值(JDK说是最好的),过高的因子会降低存储空间但是查找(lookup,包括HashMap中的put与get方法)的时间就会增加。
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//用来存储键值对的Entry数组,用于设置刚刚初始化的HashMap对象,用来减少存储空间
static final Entry<?,?>[] EMPTY_TABLE = {};
//大小必须是2的倍数
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
//存储的键值对的数目
transient int size;
//阈值,当size超过threshold时,table将会扩容. //threshold = capacity * loadFactor
int threshold;
//加载因子
final float loadFactor;
//修改次数,用于检查线程是否同步
transient int modCount;
//默认的阀值
static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
privatestaticclass Holder {staticfinalint ALTERNATIVE_HASHING_THRESHOLD;
static {
//获取jdk内置的阀值
String altThreshold = java.security.AccessController.doPrivileged(
new sun.security.action.GetPropertyAction(
"jdk.map.althashing.threshold"));
int threshold;
try {
//设置当前阀值
threshold = (null != altThreshold)
? Integer.parseInt(altThreshold)
: ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;
// disable alternative hashing if -1 if (threshold == -1) {
threshold = Integer.MAX_VALUE;
}
if (threshold < 0) {
thrownew IllegalArgumentException("value must be positive integer.");
}
} catch(IllegalArgumentException failed) {
thrownew Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
}
ALTERNATIVE_HASHING_THRESHOLD = threshold;
}
}
//使用初始化容量和加载因子初始化HashMap public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
thrownew IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
thrownew IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
threshold = initialCapacity;
init();
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
/*
* Constructs a new HashMap with the same mappings as the
* specified Map. The HashMap is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified Map.
*/public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
inflateTable(threshold);
putAllForCreate(m);
}
/**
* A randomizing value associated with this instance that is applied to
* hash code of keys to make hash collisions harder to find.
If 0 then alternative hashing is disabled.
*/
transient int hashSeed = 0;
//工具函数,将number扩展成2的倍数
privatestaticint roundUpToPowerOf2(int number) {
// assert number >= 0 : "number must be non-negative"; int rounded = number >= MAXIMUM_CAPACITY
? MAXIMUM_CAPACITY
: (rounded = Integer.highestOneBit(number)) != 0
? (Integer.bitCount(number) > 1) ? rounded << 1 : rounded
: 1;
return rounded;
}
//将表格大小扩展到toSize
privatevoid inflateTable(int toSize) {
// Find a power of 2 >= toSize int capacity = roundUpToPowerOf2(toSize);
//重新设置阀值
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
//重新设置table
table = new Entry[capacity];
//根据capacity初始化hashSeed
initHashSeedAsNeeded(capacity);
}
// internal utilities void init() {
}
/**
* Initialize the hashing mask value. We defer initialization until we
* really need it.
*/
finalboolean initHashSeedAsNeeded(int capacity) {
boolean currentAltHashing = hashSeed != 0;
//根据系统函数得到一个hash boolean useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
boolean switching = currentAltHashing ^ useAltHashing;
//如果hashSeed初始化为0则跳过switching //否则使用系统函数得到新的hashSeed if (switching) {
hashSeed = useAltHashing
? sun.misc.Hashing.randomHashSeed(this)
: 0;
}
return switching;
}
/*
哈希算法的核心:哈希函数
* Retrieve object hash code and applies a supplemental hash function to the
* result hash, which defends against poor quality hash functions. This is
* critical because HashMap uses power-of-two length hash tables, that
* otherwise encounter collisions for hashCodes that do not differ
* in lower bits. Note: Null keys always map to hash 0, thus index 0.
*/
*/
finalint hash(Object k) {
int h = hashSeed;
//通过hashSeed初始化的值的不同来选择不同的hash方式
if (0 != h && k instanceof String) {
//String类采用不同的hash函数
return sun.misc.Hashing.stringHash32((String) k);
}
h ^= k.hashCode();
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
//Returns index for hash code h.通过得到的hash值来确定它在table中的位置
staticint indexFor(int h, int length) {
// assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
return h & (length-1);
}
publicint size() {
return size;
}
publicboolean isEmpty() {
return size == 0;
}
public V get(Object key) {
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key);//查看调用函数,在下面 returnnull == entry ? null : entry.getValue();
}
private V getForNullKey() {
if (size == 0) {
returnnull;
}
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
returnnull;
}
publicboolean containsKey(Object key) {
return getEntry(key) != null;
}
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
returnnull;
}
//通过key的hash值确定table下标(null对应下标0) int hash = (key == null) ? 0 : hash(key);
//indexFor() = h & (length-1) = hash&(table.length-1) for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next)
//对冲突的处理办法是将线性探查,即将元素放到冲突位置的下一个可用位置上
{
Object k;
/*注意:因为元素可能不是刚好存在它对应hash值得下一个位置
(如果该位置之前有元素,则要放在下两个的位置,以此类推)
*/if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
//所以不仅要判断hash还要判断key(因为不同的key可能有相同的hash值) return e;
}
returnnull;
}
/*
* 1. 通过key的hash值确定table下标
* 2. 查找table下标,如果key存在则更新对应的value
* 3. 如果key不存在则调用addEntry()方法
*/public V put(K key, V value) {
if (table == EMPTY_TABLE) {
//初始化存储表空间
inflateTable(threshold);
}
if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
/*
注意:
我不断的寻找,hash值对应位置之后的可用位置在哪里
*/for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
//上面的循环结束表示当前的key不存在与表中,需要另外增加
modCount++;
addEntry(hash, key, value, i);//函数在下面 returnnull;
}
/*
为减少篇幅,删除了一些功能实现类似的方法
大家可以自行阅读分析
*//**
* Transfers all entries from current table to newTable.
*/void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
//是否重新进行hash计算 if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
//扩展到指定的大小
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = new Entry[newCapacity];
//重新hash
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
//Entry类就是一个简单的键值对的类
static class Entry<K,V> implements Map.Entry<K,V> {final K key;
V value;
Entry<K,V> next;//这是一种类似指针的东西 int hash;//还要存放hash值 /*
下面是一些十分基本的构造函数以及get,set方法
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
publicfinal K getKey() {
return key;
}
publicfinal V getValue() {
return value;
}
publicfinal V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
//必须要key和value都一样才equals
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
returnfalse;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
returntrue;
}
returnfalse;
}
publicfinalint hashCode() {
return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
}
publicfinal String toString() {
return getKey() + "=" + getValue();
}
/**
* This method is invoked whenever the value in an entry is
* overwritten by an invocation of put(k,v) for a key k that's already
* in the HashMap.
*/void recordAccess(HashMap<K,V> m) {
}
/**
* This method is invoked whenever the entry is
* removed from the table.
*/void recordRemoval(HashMap<K,V> m) {
}
}
//根据需要,可能要扩容 //由于它由Put函数调用,调用之前已经确定表中没有key的记录 //addEntry默认当前表中没有指定key的记录,直接增加记录
void addEntry(int hash, K key, V value, int bucketIndex) {
//计算存放位置 if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);//将容量翻倍
hash = (null != key) ? hash(key) : 0;
//寻找指定hash值对应的存放位置
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
//由于默认没有key的记录,所以直接增加
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
//类似于Entry数组的迭代器,主要是对table进行操作
private abstract class HashIterator<E> implements Iterator<E> {
Entry<K,V> next; // next entry to return int expectedModCount; // For fast-fail intindex; // current slot
Entry<K,V> current; // current entry
HashIterator() {
expectedModCount = modCount;
if (size > 0) { // advance to first entry
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
}
publicfinalboolean hasNext() {
return next != null;
}
final Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
thrownew ConcurrentModificationException();
Entry<K,V> e = next;
if (e == null)
thrownew NoSuchElementException();
if ((next = e.next) == null) {
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
current = e;
return e;
}
publicvoid remove() {
if (current == null)
thrownew IllegalStateException();
if (modCount != expectedModCount)
thrownew ConcurrentModificationException();
Object k = current.key;
current = null;
HashMap.this.removeEntryForKey(k);
expectedModCount = modCount;
}
}
privatefinalclass ValueIterator extends HashIterator<V> {public V next() {
return nextEntry().value;
}
}
privatefinalclass KeyIterator extends HashIterator<K> {public K next() {
return nextEntry().getKey();
}
}
privatefinalclass EntryIterator extends HashIterator<Map.Entry<K,V>> {public Map.Entry<K,V> next() {
return nextEntry();
}
}
// Subclass overrides these to alter behavior of views' iterator() method
Iterator<K> newKeyIterator() {
returnnew KeyIterator();
}
Iterator<V> newValueIterator() {
returnnew ValueIterator();
}
Iterator<Map.Entry<K,V>> newEntryIterator() {
returnnew EntryIterator();
}
// Views private transient Set<Map.Entry<K,V>> entrySet = null;
/**
* Returns a link Set view of the keys contained in this map.
*/public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
privatefinalclass KeySet extends AbstractSet<K> {public Iterator<K> iterator() {
return newKeyIterator();
}
publicint size() {
return size;
}
publicboolean contains(Object o) {
return containsKey(o);
}
publicboolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
publicvoid clear() {
HashMap.this.clear();
}
}
/**
* Returns a Collection view of the values contained in this map.
*/public Collection<V> values() {
Collection<V> vs = values;
return (vs != null ? vs : (values = new Values()));
}
privatefinalclass Values extends AbstractCollection<V> {public Iterator<V> iterator() {
return newValueIterator();
}
publicint size() {
return size;
}
publicboolean contains(Object o) {
return containsValue(o);
}
publicvoid clear() {
HashMap.this.clear();
}
}
/**
return a set view of the mappings contained in this map
*/public Set<Map.Entry<K,V>> entrySet() {
return entrySet0();
}
private Set<Map.Entry<K,V>> entrySet0() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
privatefinalclass EntrySet extends AbstractSet<Map.Entry<K,V>> {public Iterator<Map.Entry<K,V>> iterator() {
return newEntryIterator();
}
publicboolean contains(Object o) {
if (!(o instanceof Map.Entry))
returnfalse;
Map.Entry<K,V> e = (Map.Entry<K,V>) o;
Entry<K,V> candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
publicboolean remove(Object o) {
return removeMapping(o) != null;
}
publicint size() {
return size;
}
publicvoid clear() {
HashMap.this.clear();
}
}
}
Hashtable是HashMap的线程安全版本,它的实现和HashMap实现基本一致,除了它不能包含null值的key和value,并且它在计算hash值和数组索引值的方式要稍微简单一些。
Hashtable线程安全实现方式是将所有方法都标记成synchronized,但这样加锁的粒度大,容易引起一些性能问题,所以目使用java.concurrent.ConcurrentHashMap类性能更佳
在JDK1.7之后,HashMap和HashTable的哈希函数都一样了,但由hash值转换成表索引的方式不一样:
- HashMap使用&位操作 : h & (length-1);
- HashTable使用取余操作 : (hash & 0x7FFFFFFF) % tab.length;
上面的hash()方法和indexFor()是hashMap当中的一个重点。
看到这么多位操作,是不是觉得晕头转向了呢,还是搞清楚原理就行了,毕竟位操作速度是很快的,不能因为不好理解就不用了。
在哈希表容量(也就是buckets或slots大小)为length的情况下,为了使每个key都能在冲突最小的情况下映射到[0,length)(注意是左闭右开区间)的索引(index)内,一般有两种做法:
- 方法1:让length为素数,然后用hashCode(key) mod length的方法得到索引
- 方法2:让length为2的指数倍,然后用hashCode(key) & (length-1)的方法得到索引
HashTable用的是方法1,HashMap用的是方法2。重点说说方法2的情况,方法2其实也比较好理解:
因为length为2的指数倍,所以length-1所对应的二进制位都为1,然后在与hashCode(key)做与运算,即可得到[0,length)内的索引。但是这里有个问题,如果hashCode(key)的大于length的值,而且hashCode(key)的二进制位的低位变化不大,那么冲突就会很多,举个例子:
Java中对象的哈希值都32位整数,而HashMap默认大小为16,那么有两个对象那么的哈希值分别为:0xABAB0000与0xBABA0000,它们的后几位都是一样,那么与16异或后得到结果应该也是一样的,也就是产生了冲突。造成冲突的原因关键在于16限制了只能用低位来计算,高位直接舍弃了,所以我们需要额外的哈希函数而不只是简单的对象的hashCode方法了。具体来说,就是HashMap中hash函数干的事了。
roundUpToPowerOf2这个方法是用来返回大于等于最接近number的2的冪数
int rounded = number >= MAXIMUM_CAPACITY
? MAXIMUM_CAPACITY
: (rounded = Integer.highestOneBit(number)) != 0
? (Integer.bitCount(number) > 1) ? rounded << 1 : rounded
: 1;
Integer中的highestOneBit方法是用来返回小于等于最接近number的2的冪数,
例如:number=5,对应的二进制为 101,
highestOneBit(5)=100,既在number最高位为1的位置开始,后面全部补0
Integer中的bitCount方法返回number二进制中1的个数
如果number是2的冪数 b1=1,返回就是number,
如果number不是2的冪数,则highestOneBit>1,因为rounded = Integer.highestOneBit(number),rounded已经是最接近小于number的2的冪数,故,rounded<<1,左移一位,就成为最接近大于等于number的2的冪数了
3. 解决hash冲突的办法
- 开放定址法(线性探测再散列,二次探测再散列,伪随机探测再散列)
- 再哈希法
- 链地址法
- 建立一个公共溢出区
Java中hashmap的解决办法就是采用的链地址法。
4. 再散列rehash过程
当哈希表的容量超过默认容量时,必须调整table的大小。当容量已经达到最大可能值时,那么该方法就将容量调整到Integer.MAX_VALUE返回,这时,需要创建一张新表,将原表的映射到新表中。
}
}