• OpenCV 透视变换实例


    参考文献:

    http://www.cnblogs.com/self-control/archive/2013/01/18/2867022.html

    http://opencv-code.com/tutorials/automatic-perspective-correction-for-quadrilateral-objects/ 

    透视变换:

    http://blog.csdn.net/xiaowei_cqu/article/details/26478135

    具体流程为:

    a)载入图像→灰度化→边缘处理得到边缘图像(edge map)

    cv::Mat im = cv::imread(filename);

    cv::Mat gray;

    cvtColor(im,gray,CV_BGR2GRAY);

    Canny(gray,gray,100,150,3);

     

    b)霍夫变换进行直线检测,此处使用的是probabilistic Hough transform(cv::HoughLinesP)而不是standard Hough transform(cv::HoughLines)

    std::vector<Vec4i> lines;

    cv::HoughLinesP(gray,lines,1,CV_PI/180,70,30,10);

    for(int i = 0; i < lines.size(); i++)

        line(im,cv::Point(lines[i][0],lines[i][1]),cv::Point(lines[i][2],lines[i][3]),Scalar(255,0,0),2,8,0);

     

    c)通过上面的图我们可以看出,通过霍夫变换检测到的直线并没有将整个边缘包含,但是我们要求的是四个顶点所以并不一定要直线真正的相交,下面就要求四个顶点的坐标,公式为:

    perspective-quadrilateral-line-intersections-equation.png

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    cv::Point2f computeIntersect(cv::Vec4i a, cv::Vec4i b)
    {
        intx1 = a[0], y1 = a[1], x2 = a[2], y2 = a[3];
        intx3 = b[0], y3 = b[1], x4 = b[2], y4 = b[3];
     
        if(floatd = ((float)(x1-x2) * (y3-y4)) - ((y1-y2) * (x3-x4)))
        {
            cv::Point2f pt;
            pt.x = ((x1*y2 - y1*x2) * (x3-x4) - (x1-x2) * (x3*y4 - y3*x4)) / d;
            pt.y = ((x1*y2 - y1*x2) * (y3-y4) - (y1-y2) * (x3*y4 - y3*x4)) / d;
            returnpt;
        }
        else
            returncv::Point2f(-1, -1);
    }
      

      

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    std::vector<cv::Point2f> corners;
    for (int i = 0; i < lines.size(); i++)
    {
        for(intj = i+1; j < lines.size(); j++)
        {
            cv::Point2f pt = computeIntersect(lines[i], lines[j]);
            if(pt.x >= 0 && pt.y >= 0)
                corners.push_back(pt);
        }
    }

     
    d)检查是不是四边形
    1
    2
    3
    4
    5
    6
    7
    8
    9
    std::vector<cv::Point2f> approx;
    cv::approxPolyDP(cv::Mat(corners), approx,
                     cv::arcLength(cv::Mat(corners),true) * 0.02,true);
     
    if (approx.size() != 4)
    {
        std::cout <<"The object is not quadrilateral!"<< std::endl;
        return-1;
    }

      

     
    e)确定四个顶点的具体位置(top-left, bottom-left, top-right, and bottom-right corner)→通过四个顶点求出映射矩阵来.
    void sortCorners(std::vector<cv::Point2f>& corners, cv::Point2f center)
    {
        std::vector<cv::Point2f> top, bot;
     
        for(inti = 0; i < corners.size(); i++)
        {
            if(corners[i].y < center.y)
                top.push_back(corners[i]);
            else
                bot.push_back(corners[i]);
        }
     
        cv::Point2f tl = top[0].x > top[1].x ? top[1] : top[0];
        cv::Point2f tr = top[0].x > top[1].x ? top[0] : top[1];
        cv::Point2f bl = bot[0].x > bot[1].x ? bot[1] : bot[0];
        cv::Point2f br = bot[0].x > bot[1].x ? bot[0] : bot[1];
     
        corners.clear();
        corners.push_back(tl);
        corners.push_back(tr);
        corners.push_back(br);
        corners.push_back(bl);
    }

     下面是获得中心点坐标然后利用上面的函数确定四个顶点的坐标

    for (int i = 0; i < corners.size(); i++)
        center += corners[i];
     
    center *= (1. / corners.size());
    sortCorners(corners, center);

     定义目的图像并初始化为0

    cv::Mat quad = cv::Mat::zeros(300, 220, CV_8UC3);

     获取目的图像的四个顶点

    std::vector<cv::Point2f> dst_pt;
    dst.push_back(cv::Point2f(0,0));
    dst.push_back(cv::Point2f(quad.cols,0));
    dst.push_back(cv::Point2f(quad.cols,quad.rows));
    dst.push_back(cv::Point2f(0,quad.rows));

     计算映射矩阵

    cv::Mat transmtx = cv::getPerspectiveTransform(corners, quad_pts);

    进行透视变换并显示结果

    cv::warpPerspective(im, quad, transmtx, quad.size());
    cv::imshow("quadrilateral", quad);

      

     

     
    // affine transformation.cpp : 定义控制台应用程序的入口点。
    //
    
    #include "stdafx.h"
    
    /**
     * Automatic perspective correction for quadrilateral objects. See the tutorial at
     * http://opencv-code.com/tutorials/automatic-perspective-correction-for-quadrilateral-objects/
     */
    #include <opencv2/imgproc/imgproc.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <iostream>
    
    #pragma comment(lib,"opencv_core2410d.lib")          
    #pragma comment(lib,"opencv_highgui2410d.lib")          
    #pragma comment(lib,"opencv_imgproc2410d.lib")    
    
    
    
    cv::Point2f center(0,0);
    
    cv::Point2f computeIntersect(cv::Vec4i a, cv::Vec4i b)
    {
    	int x1 = a[0], y1 = a[1], x2 = a[2], y2 = a[3], x3 = b[0], y3 = b[1], x4 = b[2], y4 = b[3];
    	float denom;
    
    	if (float d = ((float)(x1 - x2) * (y3 - y4)) - ((y1 - y2) * (x3 - x4)))
    	{
    		cv::Point2f pt;
    		pt.x = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / d;
    		pt.y = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / d;
    		return pt;
    	}
    	else
    		return cv::Point2f(-1, -1);
    }
    
    void sortCorners(std::vector<cv::Point2f>& corners, 
                     cv::Point2f center)
    {
    	std::vector<cv::Point2f> top, bot;
    
    	for (int i = 0; i < corners.size(); i++)
    	{
    		if (corners[i].y < center.y)
    			top.push_back(corners[i]);
    		else
    			bot.push_back(corners[i]);
    	}
    	corners.clear();
    	
    	if (top.size() == 2 && bot.size() == 2){
    		cv::Point2f tl = top[0].x > top[1].x ? top[1] : top[0];
    		cv::Point2f tr = top[0].x > top[1].x ? top[0] : top[1];
    		cv::Point2f bl = bot[0].x > bot[1].x ? bot[1] : bot[0];
    		cv::Point2f br = bot[0].x > bot[1].x ? bot[0] : bot[1];
    	
    		
    		corners.push_back(tl);
    		corners.push_back(tr);
    		corners.push_back(br);
    		corners.push_back(bl);
    	}
    }
    
    int main()
    {
    	cv::Mat src = cv::imread("image.jpg");
    	if (src.empty())
    		return -1;
    
    	cv::Mat bw;
    	cv::cvtColor(src, bw, CV_BGR2GRAY);
    	cv::blur(bw, bw, cv::Size(3, 3));
    	cv::Canny(bw, bw, 100, 100, 3);
    
    	std::vector<cv::Vec4i> lines;
    	cv::HoughLinesP(bw, lines, 1, CV_PI/180, 70, 30, 10);
    
    	// Expand the lines
    	for (int i = 0; i < lines.size(); i++)
    	{
    		cv::Vec4i v = lines[i];
    		lines[i][0] = 0;
    		lines[i][1] = ((float)v[1] - v[3]) / (v[0] - v[2]) * -v[0] + v[1]; 
    		lines[i][2] = src.cols; 
    		lines[i][3] = ((float)v[1] - v[3]) / (v[0] - v[2]) * (src.cols - v[2]) + v[3];
    	}
    	
    	std::vector<cv::Point2f> corners;
    	for (int i = 0; i < lines.size(); i++)
    	{
    		for (int j = i+1; j < lines.size(); j++)
    		{
    			cv::Point2f pt = computeIntersect(lines[i], lines[j]);
    			if (pt.x >= 0 && pt.y >= 0)
    				corners.push_back(pt);
    		}
    	}
    
    	std::vector<cv::Point2f> approx;
    	cv::approxPolyDP(cv::Mat(corners), approx, cv::arcLength(cv::Mat(corners), true) * 0.02, true);
    
    	if (approx.size() != 4)
    	{
    		std::cout << "The object is not quadrilateral!" << std::endl;
    		return -1;
    	}
    	
    	// Get mass center
    	for (int i = 0; i < corners.size(); i++)
    		center += corners[i];
    	center *= (1. / corners.size());
    
    	sortCorners(corners, center);
    	if (corners.size() == 0){
    		std::cout << "The corners were not sorted correctly!" << std::endl;
    		return -1;
    	}
    	cv::Mat dst = src.clone();
    
    	// Draw lines
    	for (int i = 0; i < lines.size(); i++)
    	{
    		cv::Vec4i v = lines[i];
    		cv::line(dst, cv::Point(v[0], v[1]), cv::Point(v[2], v[3]), CV_RGB(0,255,0));
    	}
    
    	// Draw corner points
    	cv::circle(dst, corners[0], 3, CV_RGB(255,0,0), 2);
    	cv::circle(dst, corners[1], 3, CV_RGB(0,255,0), 2);
    	cv::circle(dst, corners[2], 3, CV_RGB(0,0,255), 2);
    	cv::circle(dst, corners[3], 3, CV_RGB(255,255,255), 2);
    
    	// Draw mass center
    	cv::circle(dst, center, 3, CV_RGB(255,255,0), 2);
    
    	cv::Mat quad = cv::Mat::zeros(300, 220, CV_8UC3);
    
    	std::vector<cv::Point2f> quad_pts;
    	quad_pts.push_back(cv::Point2f(0, 0));
    	quad_pts.push_back(cv::Point2f(quad.cols, 0));
    	quad_pts.push_back(cv::Point2f(quad.cols, quad.rows));
    	quad_pts.push_back(cv::Point2f(0, quad.rows));
    
    	cv::Mat transmtx = cv::getPerspectiveTransform(corners, quad_pts);
    	cv::warpPerspective(src, quad, transmtx, quad.size());
    
    	cv::imshow("image", dst);
    	cv::imshow("quadrilateral", quad);
    	cv::waitKey();
    	return 0;
    }
    
    
    


     

    实现结果:

  • 相关阅读:
    简单拓扑排序
    Havel-Hakimi定理
    阿里云宁磊:能力中心开启,携手伙伴共享共赢
    阿里云高磊:API网关加速能力聚合与生态集成
    阿里云智能推荐AIRec产品介绍
    OpenSearch最新功能介绍
    30分钟全方位了解阿里云Elasticsearch
    研发效能提升 36 计第三课:束水攻沙,持续加快产品交付速度
    SaaS上云工具包为企业应用构筑上云之梯
    阿里云资深技术专家黄省江:让天下没有难做的SaaS
  • 原文地址:https://www.cnblogs.com/wangyaning/p/4236955.html
Copyright © 2020-2023  润新知