• Deep Neural Network for Image Classification: Application


    来自吴恩达深度学习视频作业四 assignment4_2
    如果直接看代码对你来说有困难, 请移步: https://blog.csdn.net/u013733326/article/details/79767169

    import time
    import numpy as np
    import h5py
    import matplotlib.pyplot as plt
    import scipy
    from PIL import Image
    from scipy import ndimage
    from dnn_app_utils_v2 import *
    
    %matplotlib inline
    plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'
    
    %load_ext autoreload
    %autoreload 2
    
    np.random.seed(1)
    
    train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
    
    # Example of a picture
    index = 7
    plt.imshow(train_x_orig[index])
    print ("y = " + str(train_y[0,index]) + ". It's a " + classes[train_y[0,index]].decode("utf-8") +  " picture.")
    

    在这里插入图片描述

    # Explore your dataset 
    m_train = train_x_orig.shape[0]
    num_px = train_x_orig.shape[1]
    m_test = test_x_orig.shape[0]
    
    print ("Number of training examples: " + str(m_train))
    print ("Number of testing examples: " + str(m_test))
    print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
    print ("train_x_orig shape: " + str(train_x_orig.shape))
    print ("train_y shape: " + str(train_y.shape))
    print ("test_x_orig shape: " + str(test_x_orig.shape))
    print ("test_y shape: " + str(test_y.shape))
    
    Number of training examples: 209
    Number of testing examples: 50
    Each image is of size: (64, 64, 3)
    train_x_orig shape: (209, 64, 64, 3)
    train_y shape: (1, 209)
    test_x_orig shape: (50, 64, 64, 3)
    test_y shape: (1, 50)
    
    # Reshape the training and test examples 
    train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T   # The "-1" makes reshape flatten the remaining dimensions
    test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T
    
    # Standardize data to have feature values between 0 and 1.
    train_x = train_x_flatten/255.
    test_x = test_x_flatten/255.
    
    print ("train_x's shape: " + str(train_x.shape))
    print ("test_x's shape: " + str(test_x.shape))
    
    train_x's shape: (12288, 209)
    test_x's shape: (12288, 50)
    
    ### CONSTANTS DEFINING THE MODEL ####
    n_x = 12288     # num_px * num_px * 3
    n_h = 7
    n_y = 1
    layers_dims = (n_x, n_h, n_y)
    
    # GRADED FUNCTION: two_layer_model
    
    def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):
        """
        Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.
        
        Arguments:
        X -- input data, of shape (n_x, number of examples)
        Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
        layers_dims -- dimensions of the layers (n_x, n_h, n_y)
        num_iterations -- number of iterations of the optimization loop
        learning_rate -- learning rate of the gradient descent update rule
        print_cost -- If set to True, this will print the cost every 100 iterations 
        
        Returns:
        parameters -- a dictionary containing W1, W2, b1, and b2
        """
        
        np.random.seed(1)
        grads = {}
        costs = []                              # to keep track of the cost
        m = X.shape[1]                           # number of examples
        (n_x, n_h, n_y) = layers_dims
        
        # Initialize parameters dictionary, by calling one of the functions you'd previously implemented
        ### START CODE HERE ### (≈ 1 line of code)
        parameters = initialize_parameters(n_x, n_h, n_y)
        ### END CODE HERE ###
        
        # Get W1, b1, W2 and b2 from the dictionary parameters.
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        
        # Loop (gradient descent)
    
        for i in range(0, num_iterations):
    
            # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1". Output: "A1, cache1, A2, cache2".
            ### START CODE HERE ### (≈ 2 lines of code)
            A1, cache1 = linear_activation_forward(X, W1, b1, "relu")
            A2, cache2 = linear_activation_forward(A1, W2, b2, "sigmoid")
            ### END CODE HERE ###
            
            # Compute cost
            ### START CODE HERE ### (≈ 1 line of code)
            cost = compute_cost(A2, Y)
            ### END CODE HERE ###
            
            # Initializing backward propagation
            dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
            
            # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
            ### START CODE HERE ### (≈ 2 lines of code)
            dA1, dW2, db2 = linear_activation_backward(dA2, cache2, "sigmoid")
            dA0, dW1, db1 = linear_activation_backward(dA1, cache1, "relu")
            ### END CODE HERE ###
            
            # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
            grads['dW1'] = dW1
            grads['db1'] = db1
            grads['dW2'] = dW2
            grads['db2'] = db2
            
            # Update parameters.
            ### START CODE HERE ### (approx. 1 line of code)
            parameters = update_parameters(parameters, grads, learning_rate)
            ### END CODE HERE ###
    
            # Retrieve W1, b1, W2, b2 from parameters
            W1 = parameters["W1"]
            b1 = parameters["b1"]
            W2 = parameters["W2"]
            b2 = parameters["b2"]
            
            # Print the cost every 100 training example
            if print_cost and i % 100 == 0:
                print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
            if print_cost and i % 100 == 0:
                costs.append(cost)
           
        # plot the cost
    
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
        
        return parameters
        
    parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True)
    
    Cost after iteration 0: 0.6930497356599888
    Cost after iteration 100: 0.6464320953428849
    Cost after iteration 200: 0.6325140647912677
    Cost after iteration 300: 0.6015024920354665
    Cost after iteration 400: 0.5601966311605747
    Cost after iteration 500: 0.5158304772764729
    Cost after iteration 600: 0.4754901313943325
    Cost after iteration 700: 0.4339163151225749
    Cost after iteration 800: 0.4007977536203887
    Cost after iteration 900: 0.3580705011323798
    Cost after iteration 1000: 0.3394281538366413
    Cost after iteration 1100: 0.3052753636196264
    Cost after iteration 1200: 0.2749137728213015
    Cost after iteration 1300: 0.24681768210614832
    Cost after iteration 1400: 0.1985073503746611
    Cost after iteration 1500: 0.17448318112556657
    Cost after iteration 1600: 0.1708076297809737
    Cost after iteration 1700: 0.113065245621647
    Cost after iteration 1800: 0.09629426845937152
    Cost after iteration 1900: 0.08342617959726865
    Cost after iteration 2000: 0.07439078704319085
    Cost after iteration 2100: 0.06630748132267933
    Cost after iteration 2200: 0.059193295010381744
    Cost after iteration 2300: 0.053361403485605585
    Cost after iteration 2400: 0.04855478562877018
    

    在这里插入图片描述

    predictions_train = predict(train_x, train_y, parameters)
    
    Accuracy: 0.9999999999999998
    
    predictions_test = predict(test_x, test_y, parameters)
    
    Accuracy: 0.72
    
    ### CONSTANTS ###
    layers_dims = [12288, 20, 7, 5, 1] #  5-layer model
    # GRADED FUNCTION: L_layer_model
    
    def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009
        """
        Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.
        
        Arguments:
        X -- data, numpy array of shape (number of examples, num_px * num_px * 3)
        Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
        layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).
        learning_rate -- learning rate of the gradient descent update rule
        num_iterations -- number of iterations of the optimization loop
        print_cost -- if True, it prints the cost every 100 steps
        
        Returns:
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
    
        np.random.seed(1)
        costs = []                         # keep track of cost
        
        # Parameters initialization.
        ### START CODE HERE ###
        parameters = initialize_parameters_deep(layers_dims)
        ### END CODE HERE ###
        
        # Loop (gradient descent)
        for i in range(0, num_iterations):
    
            # Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
            ### START CODE HERE ### (≈ 1 line of code)
            AL, caches = L_model_forward(X, parameters)
            ### END CODE HERE ###
            
            # Compute cost.
            ### START CODE HERE ### (≈ 1 line of code)
            cost = compute_cost(AL, Y)
            ### END CODE HERE ###
        
            # Backward propagation.
            ### START CODE HERE ### (≈ 1 line of code)
            grads = L_model_backward(AL, Y, caches)
            ### END CODE HERE ###
     
            # Update parameters.
            ### START CODE HERE ### (≈ 1 line of code)
            parameters = update_parameters(parameters, grads, learning_rate)
            ### END CODE HERE ###
                    
            # Print the cost every 100 training example
            if print_cost and i % 100 == 0:
                print ("Cost after iteration %i: %f" %(i, cost))
            if print_cost and i % 100 == 0:
                costs.append(cost)
                
        # plot the cost
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
        
        return parameters
    
    parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)
    
    Cost after iteration 0: 0.695046
    Cost after iteration 100: 0.589260
    Cost after iteration 200: 0.523261
    Cost after iteration 300: 0.449769
    Cost after iteration 400: 0.420900
    Cost after iteration 500: 0.372464
    Cost after iteration 600: 0.347421
    Cost after iteration 700: 0.317192
    Cost after iteration 800: 0.266438
    Cost after iteration 900: 0.219914
    Cost after iteration 1000: 0.143579
    Cost after iteration 1100: 0.453092
    Cost after iteration 1200: 0.094994
    Cost after iteration 1300: 0.080141
    Cost after iteration 1400: 0.069402
    Cost after iteration 1500: 0.060217
    Cost after iteration 1600: 0.053274
    Cost after iteration 1700: 0.047629
    Cost after iteration 1800: 0.042976
    Cost after iteration 1900: 0.039036
    Cost after iteration 2000: 0.035683
    Cost after iteration 2100: 0.032915
    Cost after iteration 2200: 0.030472
    Cost after iteration 2300: 0.028388
    Cost after iteration 2400: 0.026615
    

    在这里插入图片描述

    pred_train = predict(train_x, train_y, parameters)
    
    Accuracy: 0.9999999999999998
    
    pred_test = predict(test_x, test_y, parameters)
    
    Accuracy: 0.74
    
    print_mislabeled_images(classes, test_x, test_y, pred_test)
    

    在这里插入图片描述
    作者给出了引起判断失误的原因类型,可以作为增加新特征或改进模型的依据。

    A few type of images the model tends to do poorly on include:

    • Cat body in an unusual position
    • Cat appears against a background of a similar color
    • Unusual cat color and species
    • Camera Angle
    • Brightness of the picture
    • Scale variation (cat is very large or small in image)
    ## START CODE HERE ##
    my_image = "my_image2.jpg" # change this to the name of your image file 
    my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat)
    ## END CODE HERE ##
    
    fname = "images/" + my_image
    image = np.array(ndimage.imread(fname, flatten=False))
    my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1))
    my_predicted_image = predict(my_image, my_label_y, parameters)
    
    plt.imshow(image)
    print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a "" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") +  "" picture.")
    
    C:UserswanghAnaconda3libsite-packagesipykernel_launcher.py:7: DeprecationWarning: `imread` is deprecated!
    `imread` is deprecated in SciPy 1.0.0.
    Use ``matplotlib.pyplot.imread`` instead.
      import sys
    C:UserswanghAnaconda3libsite-packagesipykernel_launcher.py:8: DeprecationWarning: `imresize` is deprecated!
    `imresize` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
    Use ``skimage.transform.resize`` instead.
      
    Accuracy: 1.0
    y = 1.0, your L-layer model predicts a "cat" picture.
    

    在这里插入图片描述

  • 相关阅读:
    查看自己的笔记本是否支持64位系统
    关闭445端口
    与postgis相关的一些常用的sql
    postgis 赋予postgresql空间数据库的能力
    ThreadLocal
    获取跨域请求的自定义的response headers
    java Bean的映射工具
    Java多线程学习
    (14)Spring Boot定时任务的使用【从零开始学Spring Boot】
    (13)处理静态资源(自定义资源映射)【从零开始学Spring Boot】
  • 原文地址:https://www.cnblogs.com/wanghongze95/p/13842544.html
Copyright © 2020-2023  润新知