• Ipad,IPhone(矩阵求递推项+欧拉定理)


    Ipad,IPhone

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 100 Accepted Submission(s): 46
     
    Problem Description
    In ACM_DIY, there is one master called “Lost”. As we know he is a “-2Dai”, which means he has a lot of money.
      

    Well, Lost use Ipad and IPhone to reward the ones who solve the following problem.
      

    In this problem, we define F( n ) as :
      

    Then Lost denote a function G(a,b,n,p) as

    Here a, b, n, p are all positive integer!
    If you could tell Lost the value of G(a,b,n,p) , then you will get one Ipad and one IPhone!
     
    Input
    The first line is one integer T indicates the number of the test cases. (T <= 100)
    Then for every case, only one line containing 4 positive integers a, b, n and p.
    (1 ≤a, b, n, p≤2*109 , p is an odd prime number and a,b < p.)
     
    Output
    Output one line,the value of the G(a,b,n,p) .
     
    Sample Input
    4
    2 3 1 10007
    2 3 2 10007
    2 3 3 10007
    2 3 4 10007
     
    Sample Output
    40
    392
    3880
    9941
     
    Author
    AekdyCoin
     
     
    Recommend
    notonlysuccess
    /*
    题意:给出如图所示的式子,让你求出值
    
    初步思路:斐波那契数列后推一位,直接求是不可以的,因为几十项就会爆,所以用到矩阵求斐波那契数列,式子的前半部分可以直接用快速幂求得
        现在有一个问题,就是X^t mod q是不是等于 X^(t mod q) 先爆一发试试
    
    #错误:上面的想法显然是错误的!
    
    #改进:后边的比较麻烦,后半部分用矩阵求递推项,这几天看这个好麻烦啊,转专业没学线性代数,构造矩阵就麻烦死了。
        首先令    Xn=(sqrt(a)+sqrt(b))^(2*fn)
                Yn=(sqrt(a)-sqrt(b))^(2*fn)
        然后得    X1=a+b+2*sqrt(ab)
                Y1=a+b-2*sqrt(ab)
            得    X1+Y1=2*(a+b)
                X1*Y1=(a-b)^2
    由韦达定理
    求特征方程:u^2-2*(a+b)*u+(a-b)^2=0;
    
    得特征方程    Zn^2=2*(a+b)*Zn-1 - (a-b)^2*Zn-2
    
    由此构造矩阵 Zn=(Z0,Z1)*{ 0 , -(a-b)^2 }^n
                            { 1 , 2*(a+b)  }    
                            
    */
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    ll mod;
    /******************快速幂*************************/
    ll my_pow(ll a,ll b){
        ll ans = 1;
        while(b){
            if (b%2)
                ans = (ans*a)%mod;
            b/=2;
            a=(a*a)%mod;
        }
        return ans;
    }
    /******************快速幂*************************/
    
    /*******************矩阵快速幂**********************/
    struct Mar{
        ll mat[2][2];
    };
    Mar E={1,0,0,1},unit2={0,1,1,1};
    Mar mul(Mar a,Mar b){
        ll fumod(ll);
        Mar ans={0,0,0,0};
        for (int i = 0; i < 2; ++i)
            for (int j = 0; j < 2; ++j)
                for (int k = 0; k <2; ++k){
                    ans.mat[i][j]+=(a.mat[i][k]*b.mat[k][j])%mod;
                    ans.mat[i][j]%=mod;
            }
        return ans;
    }
    Mar pow2(Mar a,ll n){
        Mar ans = E;
        while(n){
            if (n%2)
                ans = mul(ans,a);
            n/=2;
            a=mul(a,a);
        }
        return ans;
    }
    /*******************矩阵快速幂**********************/
    
    ll fib(ll n){//求斐波那契数列
        Mar uu={1,1,1,1};
        Mar p=pow2(unit2,n);
        p=mul(uu,p);
        return p.mat[0][0];
    }
    int main(){
        //freopen("in.txt","r",stdin);
        ll T,a,b,n,p;
        scanf("%lld",&T);
        while(T--){
            scanf("%lld%lld%lld%lld",&a,&b,&n,&p);
            mod = p;
            //前边的两项
            ll temp1=(my_pow(a,(p-1)/2)+1)%mod;
            ll temp2=(my_pow(b,(p-1)/2)+1)%mod;
            
            if (!temp1 || !temp2){cout << "0" << endl;continue;}
            --mod;
            
            ll fn=fib(n);
            ++mod;
            
            //矩阵求后边的两项
            Mar unit={2,2*(a+b)%mod,1,1};
            Mar tmp1={0,-(a-b)*(a-b)%mod,1,2*(a+b)%mod};
            Mar p=pow2(tmp1,fn);
            p=mul(unit,p);
            ll pn=p.mat[0][0];
            ll ans = pn%mod*temp1%mod*temp2%mod;
            while(ans < 0)ans+=mod;
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    JDBC 连接 MySQL 数据库
    通过java类的反射机制获取类的属性类型
    反射机制实例化类,并获取类中的属性、方法、和构造器
    java8u162反射机制的一个BUG
    Java反射关于getDeclaredMethods()和getMethods()的区别
    Java反射
    30天C#基础巩固------了解委托,string练习
    30天C#基础巩固------读写流(StreamWrite/StreamReader)
    30天C#基础巩固------集合,File(文件操作 ),Encoding处理字符集
    30天C#基础巩固------面向鸭子编程,关于string和File的练习
  • 原文地址:https://www.cnblogs.com/wuwangchuxin0924/p/6350320.html
Copyright © 2020-2023  润新知