GCD |
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
Total Submission(s): 76 Accepted Submission(s): 50 |
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem: Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M. |
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
|
Output
For each test case,output the answer on a single line.
|
Sample Input
3 1 1 10 2 10000 72 |
Sample Output
1 6 260 |
Source
ECJTU 2009 Spring Contest
|
Recommend
lcy
|
/* 题意:给出N,M让你求出 X的个数 ,X满足GCD(X,N)>=M; 初步思路:首先N的比M大的因子肯定是,是这个因子的倍数的也是。除此之外就没了,因为其他的数GCD(other,N)=1,如果M等于1的话,直接输出N就行了 现在的问题就是怎么找因子的倍数,因为会有重复的,res=N/x(x是N的因子);对于因子x有res个可满足的结果,但是在计算过程中会有重复的存在, 这样,令pi<=res && GCD(pi,res)==1,这样保证了 pi*x不会重复,就转化成了,求N/x的欧拉函数 */ #include<bits/stdc++.h> using namespace std; /**************************欧拉函数模板*****************************/ //直接求解欧拉函数 int euler(int n){ //返回euler(n) int res=n,a=n; for(int i=2;i*i<=a;i++){ if(a%i==0){ res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出 while(a%i==0) a/=i; } } if(a>1) res=res/a*(a-1); return res; } /**************************欧拉函数模板*****************************/ int solve(int n,int m){ if(m==1) return n; int cur=0; for(int i=2;i*i<=n;i++){ if(n%i==0){//i是n的因子 if(i>=m){ cur+=euler(n/i); } if(i*i!=n){//对面的因子 if(n/i>=m){ cur+=euler(n/(n/i)); } } } } return cur+1; } int t; int n,m; int main(){ //freopen("in.txt","r",stdin); scanf("%d",&t); while(t--){ scanf("%d%d",&n,&m); printf("%d ",solve(n,m)); } return 0; }