• 爬虫----破解极验滑动验证码


    一 介绍

        一些网站会在正常的账号密码认证之外加一些验证码,以此来明确地区分人/机行为,从一定程度上达到反爬的效果,对于简单的校验码Tesserocr就可以搞定,如下

        但一些网站加入了滑动验证码,最典型的要属于极验滑动认证了,极验官网:http://www.geetest.com/,下图是极验的登录界面

        现在极验验证码已经更新到了 3.0 版本,截至 2017 年 7 月全球已有十六万家企业正在使用极验,每天服务响应超过四亿次,广泛应用于直播视频、金融服务、电子商务、游戏娱乐、政府企业等各大类型网站

    对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会让你蛋碎一地,我们可以用selenium驱动浏览器来解决这个问题,大致分为以下几个步骤

    复制代码
    #步骤一:点击按钮,弹出没有缺口的图片
    
    #步骤二:获取步骤一的图片
    
    #步骤三:点击滑动按钮,弹出带缺口的图片
    
    #步骤四:获取带缺口的图片
    
    #步骤五:对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离
    
    #步骤六:模拟人的行为习惯(先匀加速拖动后匀减速拖动),把需要拖动的总距离分成一段一段小的轨迹
    
    #步骤七:按照轨迹拖动,完全验证
    
    #步骤八:完成登录
    复制代码

    二 实现

    复制代码
    #安装:selenium+chrome/phantomjs
    
    #安装:Pillow
    Pillow:基于PIL,处理python 3.x的图形图像库.因为PIL只能处理到python 2.x,而这个模块能处理Python3.x,目前用它做图形的很多.
    http://www.cnblogs.com/apexchu/p/4231041.html
    
    C:UsersAdministrator>pip3 install pillow
    C:UsersAdministrator>python3
    Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 18:41:36) [MSC v.1900 64 bit (AMD64)] on win32
    Type "help", "copyright", "credits" or "license" for more information.
    >>> from PIL import Image
    >>>
    from selenium import webdriver
    from selenium.webdriver import ActionChains
    from selenium.webdriver.common.by import By
    from selenium.webdriver.common.keys import Keys
    from selenium.webdriver.support import expected_conditions as EC
    from selenium.webdriver.support.wait import WebDriverWait
    from PIL import Image
    import time
    
    def get_snap():
        '''
        对整个网页截图,保存成图片,然后用PIL.Image拿到图片对象
        :return: 图片对象
        '''
        driver.save_screenshot('snap.png')
        page_snap_obj=Image.open('snap.png')
        return page_snap_obj
    
    def get_image():
        '''
        从网页的网站截图中,截取验证码图片
        :return: 验证码图片
        '''
        img=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_canvas_img')))
        time.sleep(2) #保证图片刷新出来
        localtion=img.location
        size=img.size
    
        top=localtion['y']
        bottom=localtion['y']+size['height']
        left=localtion['x']
        right=localtion['x']+size['width']
    
        page_snap_obj=get_snap()
        crop_imag_obj=page_snap_obj.crop((left,top,right,bottom))
        return crop_imag_obj
    
    
    def get_distance(image1,image2):
        '''
        拿到滑动验证码需要移动的距离
        :param image1:没有缺口的图片对象
        :param image2:带缺口的图片对象
        :return:需要移动的距离
        '''
        threshold=60
        left=57
        for i in range(left,image1.size[0]):
            for j in range(image1.size[1]):
                rgb1=image1.load()[i,j]
                rgb2=image2.load()[i,j]
                res1=abs(rgb1[0]-rgb2[0])
                res2=abs(rgb1[1]-rgb2[1])
                res3=abs(rgb1[2]-rgb2[2])
                if not (res1 < threshold and res2 < threshold and res3 < threshold):
                    return i-7 #经过测试,误差为大概为7
        return i-7 #经过测试,误差为大概为7
    
    
    def get_tracks(distance):
        '''
        拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
        匀变速运动基本公式:
        ①v=v0+at
        ②s=v0t+½at²
        ③v²-v0²=2as
    
        :param distance: 需要移动的距离
        :return: 存放每0.3秒移动的距离
        '''
        #初速度
        v=0
        #单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
        t=0.3
        #位移/轨迹列表,列表内的一个元素代表0.2s的位移
        tracks=[]
        #当前的位移
        current=0
        #到达mid值开始减速
        mid=distance*4/5
    
        while current < distance:
            if current < mid:
                # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
                a= 2
            else:
                a=-3
    
            #初速度
            v0=v
            #0.2秒时间内的位移
            s=v0*t+0.5*a*(t**2)
            #当前的位置
            current+=s
            #添加到轨迹列表
            tracks.append(round(s))
    
            #速度已经达到v,该速度作为下次的初速度
            v=v0+a*t
        return tracks
    
    
    try:
        driver=webdriver.Chrome()
        driver.get('https://account.geetest.com/login')
        wait=WebDriverWait(driver,10)
    
        #步骤一:先点击按钮,弹出没有缺口的图片
        button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_radar_tip')))
        button.click()
    
        #步骤二:拿到没有缺口的图片
        image1=get_image()
    
        #步骤三:点击拖动按钮,弹出有缺口的图片
        button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_slider_button')))
        button.click()
    
        #步骤四:拿到有缺口的图片
        image2=get_image()
    
        # print(image1,image1.size)
        # print(image2,image2.size)
    
        #步骤五:对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离
        distance=get_distance(image1,image2)
    
        #步骤六:模拟人的行为习惯(先匀加速拖动后匀减速拖动),把需要拖动的总距离分成一段一段小的轨迹
        tracks=get_tracks(distance)
        print(tracks)
        print(image1.size)
        print(distance,sum(tracks))
    
    
        #步骤七:按照轨迹拖动,完全验证
        button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_slider_button')))
        ActionChains(driver).click_and_hold(button).perform()
        for track in tracks:
            ActionChains(driver).move_by_offset(xoffset=track,yoffset=0).perform()
        else:
            ActionChains(driver).move_by_offset(xoffset=3,yoffset=0).perform() #先移过一点
            ActionChains(driver).move_by_offset(xoffset=-3,yoffset=0).perform() #再退回来,是不是更像人了
    
        time.sleep(0.5) #0.5秒后释放鼠标
        ActionChains(driver).release().perform()
    
    
        #步骤八:完成登录
        input_email=driver.find_element_by_id('email')
        input_password=driver.find_element_by_id('password')
        button=wait.until(EC.element_to_be_clickable((By.CLASS_NAME,'login-btn')))
    
        input_email.send_keys('18611453110@163.com')
        input_password.send_keys('linhaifeng123')
        # button.send_keys(Keys.ENTER)
        button.click()
    
        import time
        time.sleep(200)
    finally:
        driver.close()
    View Code
    from selenium import webdriver
    from selenium.webdriver import ActionChains
    from selenium.webdriver.common.by import By
    from selenium.webdriver.common.keys import Keys
    from selenium.webdriver.support import expected_conditions as EC
    from selenium.webdriver.support.wait import WebDriverWait
    from PIL import Image
    import time
    
    def get_snap():
        driver.save_screenshot('full_snap.png')
        page_snap_obj=Image.open('full_snap.png')
        return page_snap_obj
    
    def get_image():
        img=driver.find_element_by_class_name('geetest_canvas_img')
        time.sleep(2)
        location=img.location
        size=img.size
    
        left=location['x']
        top=location['y']
        right=left+size['width']
        bottom=top+size['height']
    
        page_snap_obj=get_snap()
        image_obj=page_snap_obj.crop((left,top,right,bottom))
        # image_obj.show()
        return image_obj
    
    def get_distance(image1,image2):
        start=57
        threhold=60
    
        for i in range(start,image1.size[0]):
            for j in range(image1.size[1]):
                rgb1=image1.load()[i,j]
                rgb2=image2.load()[i,j]
                res1=abs(rgb1[0]-rgb2[0])
                res2=abs(rgb1[1]-rgb2[1])
                res3=abs(rgb1[2]-rgb2[2])
                # print(res1,res2,res3)
                if not (res1 < threhold and res2 < threhold and res3 < threhold):
                    return i-7
        return i-7
    
    def get_tracks(distance):
        distance+=20 #先滑过一点,最后再反着滑动回来
        v=0
        t=0.2
        forward_tracks=[]
    
        current=0
        mid=distance*3/5
        while current < distance:
            if current < mid:
                a=2
            else:
                a=-3
    
            s=v*t+0.5*a*(t**2)
            v=v+a*t
            current+=s
            forward_tracks.append(round(s))
    
        #反着滑动到准确位置
        back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20
    
        return {'forward_tracks':forward_tracks,'back_tracks':back_tracks}
    
    try:
        # 1、输入账号密码回车
        driver = webdriver.Chrome()
        driver.implicitly_wait(3)
        driver.get('https://passport.cnblogs.com/user/signin')
    
        username = driver.find_element_by_id('input1')
        pwd = driver.find_element_by_id('input2')
        signin = driver.find_element_by_id('signin')
    
        username.send_keys('linhaifeng')
        pwd.send_keys('xxxxx')
        signin.click()
    
        # 2、点击按钮,得到没有缺口的图片
        button = driver.find_element_by_class_name('geetest_radar_tip')
        button.click()
    
        # 3、获取没有缺口的图片
        image1 = get_image()
    
        # 4、点击滑动按钮,得到有缺口的图片
        button = driver.find_element_by_class_name('geetest_slider_button')
        button.click()
    
        # 5、获取有缺口的图片
        image2 = get_image()
    
        # 6、对比两种图片的像素点,找出位移
        distance = get_distance(image1, image2)
    
        # 7、模拟人的行为习惯,根据总位移得到行为轨迹
        tracks = get_tracks(distance)
        print(tracks)
    
        # 8、按照行动轨迹先正向滑动,后反滑动
        button = driver.find_element_by_class_name('geetest_slider_button')
        ActionChains(driver).click_and_hold(button).perform()
    
        # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速
        for track in tracks['forward_tracks']:
            ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()
    
        # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动
        time.sleep(0.5)
        for back_track in tracks['back_tracks']:
            ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()
    
        # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率
        ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
        ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()
    
        # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手
        time.sleep(0.5)
        ActionChains(driver).release().perform()
    
        time.sleep(10)  # 睡时间长一点,确定登录成功
    finally:
        driver.close()
    
    破解博客园后台登录
    破解博客园后台登录
    from selenium import webdriver
    from selenium.webdriver import ActionChains
    from selenium.webdriver.common.by import By
    from selenium.webdriver.common.keys import Keys
    from selenium.webdriver.support import expected_conditions as EC
    from selenium.webdriver.support.wait import WebDriverWait
    from PIL import Image
    import time
    
    def get_snap(driver):
        driver.save_screenshot('full_snap.png')
        page_snap_obj=Image.open('full_snap.png')
        return page_snap_obj
    
    def get_image(driver):
        img=driver.find_element_by_class_name('geetest_canvas_img')
        time.sleep(2)
        location=img.location
        size=img.size
    
        left=location['x']
        top=location['y']
        right=left+size['width']
        bottom=top+size['height']
    
        page_snap_obj=get_snap(driver)
        image_obj=page_snap_obj.crop((left,top,right,bottom))
        # image_obj.show()
        return image_obj
    
    def get_distance(image1,image2):
        start=57
        threhold=60
    
        for i in range(start,image1.size[0]):
            for j in range(image1.size[1]):
                rgb1=image1.load()[i,j]
                rgb2=image2.load()[i,j]
                res1=abs(rgb1[0]-rgb2[0])
                res2=abs(rgb1[1]-rgb2[1])
                res3=abs(rgb1[2]-rgb2[2])
                # print(res1,res2,res3)
                if not (res1 < threhold and res2 < threhold and res3 < threhold):
                    return i-7
        return i-7
    
    def get_tracks(distance):
        distance+=20 #先滑过一点,最后再反着滑动回来
        v=0
        t=0.2
        forward_tracks=[]
    
        current=0
        mid=distance*3/5
        while current < distance:
            if current < mid:
                a=2
            else:
                a=-3
    
            s=v*t+0.5*a*(t**2)
            v=v+a*t
            current+=s
            forward_tracks.append(round(s))
    
        #反着滑动到准确位置
        back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20
    
        return {'forward_tracks':forward_tracks,'back_tracks':back_tracks}
    
    def crack(driver): #破解滑动认证
        # 1、点击按钮,得到没有缺口的图片
        button = driver.find_element_by_class_name('geetest_radar_tip')
        button.click()
    
        # 2、获取没有缺口的图片
        image1 = get_image(driver)
    
        # 3、点击滑动按钮,得到有缺口的图片
        button = driver.find_element_by_class_name('geetest_slider_button')
        button.click()
    
        # 4、获取有缺口的图片
        image2 = get_image(driver)
    
        # 5、对比两种图片的像素点,找出位移
        distance = get_distance(image1, image2)
    
        # 6、模拟人的行为习惯,根据总位移得到行为轨迹
        tracks = get_tracks(distance)
        print(tracks)
    
        # 7、按照行动轨迹先正向滑动,后反滑动
        button = driver.find_element_by_class_name('geetest_slider_button')
        ActionChains(driver).click_and_hold(button).perform()
    
        # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速
        for track in tracks['forward_tracks']:
            ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()
    
        # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动
        time.sleep(0.5)
        for back_track in tracks['back_tracks']:
            ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()
    
        # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率
        ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
        ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()
    
        # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手
        time.sleep(0.5)
        ActionChains(driver).release().perform()
    
    def login_cnblogs(username,password):
        driver = webdriver.Chrome()
        try:
            # 1、输入账号密码回车
            driver.implicitly_wait(3)
            driver.get('https://passport.cnblogs.com/user/signin')
    
            input_username = driver.find_element_by_id('input1')
            input_pwd = driver.find_element_by_id('input2')
            signin = driver.find_element_by_id('signin')
    
            input_username.send_keys(username)
            input_pwd.send_keys(password)
            signin.click()
    
            # 2、破解滑动认证
            crack(driver)
    
            time.sleep(10)  # 睡时间长一点,确定登录成功
        finally:
            driver.close()
    
    if __name__ == '__main__':
        login_cnblogs(username='linhaifeng',password='xxxx')
    
    修订版
    加强版

     说明

      面对简单的滑动验证码,极验其实是有更复杂版本的,如下所示

    机器识别难度高了,大部分屌丝码农搞不定了。然而人类也蒙蔽了,易用性降到极低。

    使用了上述验证的网站常常会在用户一片怨声载道中,又将其恢复成易于破解的滑动验证。

    验证过程,是个破解难度、用户体验之间的一个平衡点。体验越好的,破解也越容易。 
    嘲讽验证码无效,破解简单,是很 LOW 的行为。

    网站方、验证码平台方,知道你能破解,你牛 B。。。更难的验证码他们也有,只是这会严重降低体验,他们不用而已。

  • 相关阅读:
    中国的信息产业一定由中国的工商业养活,中国的工商业一定要养活自己的信息产业
    2017-2018-1 20155201 《信息安全系统设计基础》第十三周学习总结
    2017-2018-1 20155201 实验五 通讯协议设计
    《深入理解计算机系统》第二章 信息的表示与处理
    2017-2018-1 20155201 《信息安全系统设计基础》第十一周学习总结
    2017-2018-1 20155201 实验四 外设驱动程序设计
    信息安全技术 实验四 木马及远程控制技术
    实验四
    2017-2018-1 20155201 《信息安全系统设计基础》第九周学习总结
    cmder使用手册
  • 原文地址:https://www.cnblogs.com/w-s-l123/p/8317546.html
Copyright © 2020-2023  润新知