• 图像分类丨ILSVRC历届冠军网络「从AlexNet到SENet」


    前言

    • 深度卷积网络极大地推进深度学习各领域的发展,ILSVRC作为最具影响力的竞赛功不可没,促使了许多经典工作。我梳理了ILSVRC分类任务的各届冠军和亚军网络,简单介绍了它们的核心思想、网络架构及其实现。

      代码主要来自:https://github.com/weiaicunzai/pytorch-cifar100

    • ImageNet和ILSVRC

      1. ImageNet是一个超过15 million的图像数据集,大约有22,000类。

      2. ILSVRC全称ImageNet Large-Scale Visual Recognition Challenge,从2010年开始举办到2017年最后一届,使用ImageNet数据集的一个子集,总共有1000类。

    • 历届结果

    preview

    网络/队名 val top-1 val top-5 test top-5 备注
    2012 AlexNet 38.1% 16.4% 16.42% 5 CNNs
    2012 AlexNet 36.7% 15.4% 15.32% 7CNNs。用了2011年的数据
    2013 OverFeat 14.18% 7 fast models
    2013 OverFeat 13.6% 赛后。7 big models
    2013 ZFNet 13.51% ZFNet论文上的结果是14.8
    2013 Clarifai 11.74%
    2013 Clarifai 11.20% 用了2011年的数据
    2014 VGG 7.32% 7 nets, dense eval
    2014 VGG(亚军) 23.7% 6.8% 6.8% 赛后。2 nets
    2014 GoogleNet v1 6.67% 7 nets, 144 crops
    GoogleNet v2 20.1% 4.9% 4.82% 赛后。6 nets, 144 crops
    GoogleNet v3 17.2% 3.58% 赛后。4 nets, 144 crops
    GoogleNet v4 16.5% 3.1% 3.08% 赛后。v4+Inception-Res-v2
    2015 ResNet 3.57% 6 models
    2016 Trimps-Soushen 2.99% 公安三所
    2016 ResNeXt(亚军) 3.03% 加州大学圣地亚哥分校
    2017 SENet 2.25% Momenta 与牛津大学
    • 评价标准

      top1是指概率向量中最大的作为预测结果,若分类正确,则为正确;top5则只要概率向量中最大的前五名里有分类正确的,则为正确。

    LeNet

    Gradient-Based Learning Applied to Document Recognition

    网络架构

    1558439620048

    import torch.nn as nn
    import torch.nn.functional as func
    class LeNet(nn.Module):
        def __init__(self):
            super(LeNet, self).__init__()
            self.conv1 = nn.Conv2d(1, 6, kernel_size=5)
            self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
            self.fc1 = nn.Linear(16*16, 120)
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
    
        def forward(self, x):
            x = func.relu(self.conv1(x))
            x = func.max_pool2d(x, 2)
            x = func.relu(self.conv2(x))
            x = func.max_pool2d(x, 2)
            x = x.view(x.size(0), -1)
            x = func.relu(self.fc1(x))
            x = func.relu(self.fc2(x))
            x = self.fc3(x)
            return x
    

    AlexNet

    ImageNet Classification with Deep Convolutional Neural Networks

    核心思想

    • AlexNet相比前人有以下改进:

      1. 采用ReLU激活函数

      2. 局部响应归一化LRN

        v2-80acfa6067be50f4d97db91caf82b03e_b

      3. Overlapping Pooling

      4. 引入Drop out

      5. 数据增强

      6. 多GPU并行

    网络架构

    1558407153867

    • 代码实现
    class AlexNet(nn.Module):
        def __init__(self, num_classes=NUM_CLASSES):
            super(AlexNet, self).__init__()
            self.features = nn.Sequential(
                nn.Conv2d(1, 96, kernel_size=11,padding=1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=2),
                nn.Conv2d(96, 256, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=2),
                nn.Conv2d(256, 384, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(384, 384, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(384, 256, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=2),
            )
            self.classifier = nn.Sequential(
                nn.Dropout(),
                nn.Linear(256 * 2 * 2, 4096),
                nn.ReLU(inplace=True),
                nn.Dropout(),
                nn.Linear(4096, 4096),
                nn.ReLU(inplace=True),
                nn.Linear(4096, 10),
            )
    
        def forward(self, x):
            x = self.features(x)
            x = x.view(x.size(0), 256 * 2 * 2)
            x = self.classifier(x)
            return x
    

    实验结果

    1558407290571

    ZFNet

    Visualizing and Understanding Convolutional Networks

    核心思想

    • 利用反卷积可视化CNN学到的特征。
      1. Unpooling:池化操作不可逆,但通过记录池化最大值的位置可实现逆操作。
      2. Rectification:ReLU
      3. Filtering:使用原卷积核的转置版本。

    1558423333939

    网络架构

    1558424007907

    实验结果

    • 特征可视化:Layer2响应角落和边缘、颜色连接;Layer3有更复杂的不变性,捕获相似纹理;Layer4展示了明显的变化,跟类别更相关;Layer5看到整个物体。

    1558424153781

    • 训练过程特征演化:低层特征较快收敛,高层到后面才开始变化。

    1558424876675

    • 特征不变性:小变换在模型第一层变化明显,但在顶层影响较小。网络输出对翻转和缩放是稳定的,但除了旋转对称性的物体,输出对旋转并不是不变的。
    • 遮挡敏感性:当对象被遮挡,准确性会明显下降。
    • ImageNet结果

    1558424064949

    VGG

    Very Deep Convolutional Networks for Large-Scale Image Recognition

    核心思想

    • 重复使用3x3卷积和2x2池化增加网络深度。

    网络架构

    • VGG19表示有19层conv或fc,参数量较大。

    1558403606722

    • 代码实现
    cfg = {
        'A' : [64,     'M', 128,      'M', 256, 256,           'M', 512, 512,           'M', 512, 512,           'M'],
        'B' : [64, 64, 'M', 128, 128, 'M', 256, 256,           'M', 512, 512,           'M', 512, 512,           'M'],
        'D' : [64, 64, 'M', 128, 128, 'M', 256, 256, 256,      'M', 512, 512, 512,      'M', 512, 512, 512,      'M'],
        'E' : [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M']
    }
    
    def vgg19_bn():
        return VGG(make_layers(cfg['E'], batch_norm=True))
    
    class VGG(nn.Module):
    
        def __init__(self, features, num_class=100):
            super().__init__()
            self.features = features
    
            self.classifier = nn.Sequential(
                nn.Linear(512, 4096),
                nn.ReLU(inplace=True),
                nn.Dropout(),
                nn.Linear(4096, 4096),
                nn.ReLU(inplace=True),
                nn.Dropout(),
                nn.Linear(4096, num_class)
            )
    
        def forward(self, x):
            output = self.features(x)
            output = output.view(output.size()[0], -1)
            output = self.classifier(output)
        
            return output
        
        def make_layers(cfg, batch_norm=False):
        	layers = []
    
            input_channel = 3
            for l in cfg:
                if l == 'M':
                    layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
                    continue
    
                layers += [nn.Conv2d(input_channel, l, kernel_size=3, padding=1)]
    
                if batch_norm:
                    layers += [nn.BatchNorm2d(l)]
    
                layers += [nn.ReLU(inplace=True)]
                input_channel = l
    
            return nn.Sequential(*layers)
    

    实验结果

    1558403938531

    GoogLeNet(v1)

    Going Deeper with Convolutions

    核心思想

    • 提出Inception模块,可在保持计算成本的同时增加网络的深度和宽度。

    1557974910524

    • 代码实现
    class Inception(nn.Module):
        def __init__(self, input_channels, n1x1, n3x3_reduce, n3x3, n5x5_reduce, n5x5, pool_proj):
            super().__init__()
    
            #1x1conv branch
            self.b1 = nn.Sequential(
                nn.Conv2d(input_channels, n1x1, kernel_size=1),
                nn.BatchNorm2d(n1x1),
                nn.ReLU(inplace=True)
            )
    
            #1x1conv -> 3x3conv branch
            self.b2 = nn.Sequential(
                nn.Conv2d(input_channels, n3x3_reduce, kernel_size=1),
                nn.BatchNorm2d(n3x3_reduce),
                nn.ReLU(inplace=True),
                nn.Conv2d(n3x3_reduce, n3x3, kernel_size=3, padding=1),
                nn.BatchNorm2d(n3x3),
                nn.ReLU(inplace=True)
            )
    
            #1x1conv -> 5x5conv branch
            #we use 2 3x3 conv filters stacked instead
            #of 1 5x5 filters to obtain the same receptive
            #field with fewer parameters
            self.b3 = nn.Sequential(
                nn.Conv2d(input_channels, n5x5_reduce, kernel_size=1),
                nn.BatchNorm2d(n5x5_reduce),
                nn.ReLU(inplace=True),
                nn.Conv2d(n5x5_reduce, n5x5, kernel_size=3, padding=1),
                nn.BatchNorm2d(n5x5, n5x5),
                nn.ReLU(inplace=True),
                nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1),
                nn.BatchNorm2d(n5x5),
                nn.ReLU(inplace=True)
            )
    
            #3x3pooling -> 1x1conv
            #same conv
            self.b4 = nn.Sequential(
                nn.MaxPool2d(3, stride=1, padding=1),
                nn.Conv2d(input_channels, pool_proj, kernel_size=1),
                nn.BatchNorm2d(pool_proj),
                nn.ReLU(inplace=True)
            )
        
        def forward(self, x):
            return torch.cat([self.b1(x), self.b2(x), self.b3(x), self.b4(x)], dim=1)
    

    网络架构

    1558405038401

    1558404892435

    • 代码实现
    def googlenet():
        return GoogleNet()
    
    class GoogleNet(nn.Module):
    
        def __init__(self, num_class=100):
            super().__init__()
            self.prelayer = nn.Sequential(
                nn.Conv2d(3, 192, kernel_size=3, padding=1),
                nn.BatchNorm2d(192),
                nn.ReLU(inplace=True)
            )
    
            #although we only use 1 conv layer as prelayer,
            #we still use name a3, b3.......
            self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
            self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)
    
            #"""In general, an Inception network is a network consisting of
            #modules of the above type stacked upon each other, with occasional 
            #max-pooling layers with stride 2 to halve the resolution of the 
            #grid"""
            self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
    
            self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
            self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
            self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
            self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
            self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)
    
            self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
            self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)
    
            #input feature size: 8*8*1024
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            self.dropout = nn.Dropout2d(p=0.4)
            self.linear = nn.Linear(1024, num_class)
        
        def forward(self, x):
            output = self.prelayer(x)
            output = self.a3(output)
            output = self.b3(output)
            
            output = self.maxpool(output)
    
            output = self.a4(output)
            output = self.b4(output)
            output = self.c4(output)
            output = self.d4(output)
            output = self.e4(output)
    
            output = self.maxpool(output)
    
            output = self.a5(output)
            output = self.b5(output)
    
            #"""It was found that a move from fully connected layers to
            #average pooling improved the top-1 accuracy by about 0.6%, 
            #however the use of dropout remained essential even after 
            #removing the fully connected layers."""
            output = self.avgpool(output)
            output = self.dropout(output)
            output = output.view(output.size()[0], -1)
            output = self.linear(output)
    
            return output
    

    实验结果

    1558405203984

    ResNet

    Deep Residual Learning for Image Recognition

    核心思想

    • 为了解决深层网络难以训练的问题,提出了残差模块和深度残差网络
      1. 假设网络输入是(x),经学习的输出是(F(x)),最终拟合目标是(H(x))
      2. 深层网络相比浅层网络有一些层是多余的,若让多余层学习恒等变换(H(x)=x),那么网络性能不该比浅层网络要差。
      3. 传统网络训练目标(H(x)=F(x)),残差网络训练目标(H(x)=F(x)+x)
      4. 为了学习恒等变换,传统网络要求网络学习(F(x)=H(x)=x),残差网络只需学习(F(x)=H(x)-x=x-x=0)。残差学习之所以有效是因为让网络学习(F(x)=0)比学习(F(x)=x)要容易。

    1558405531854

    • bottleneck

    img

    • 代码实现
    class BottleNeck(nn.Module):
        """Residual block for resnet over 50 layers
    
        """
        expansion = 4
        def __init__(self, in_channels, out_channels, stride=1):
            super().__init__()
            self.residual_function = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
                nn.BatchNorm2d(out_channels),
                nn.ReLU(inplace=True),
                nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False),
                nn.BatchNorm2d(out_channels),
                nn.ReLU(inplace=True),
                nn.Conv2d(out_channels, out_channels * BottleNeck.expansion, kernel_size=1, bias=False),
                nn.BatchNorm2d(out_channels * BottleNeck.expansion),
            )
    
            self.shortcut = nn.Sequential()
    
            if stride != 1 or in_channels != out_channels * BottleNeck.expansion:
                self.shortcut = nn.Sequential(
                    nn.Conv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False),
                    nn.BatchNorm2d(out_channels * BottleNeck.expansion)
                )
            
        def forward(self, x):
            return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))
    

    网络架构

    1558405616227

    1558405644786

    • 代码实现
    def resnet152():
        """ return a ResNet 152 object
        """
        return ResNet(BottleNeck, [3, 8, 36, 3])
        
    class ResNet(nn.Module):
    
        def __init__(self, block, num_block, num_classes=100):
            super().__init__()
    
            self.in_channels = 64
    
            self.conv1 = nn.Sequential(
                nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
                nn.BatchNorm2d(64),
                nn.ReLU(inplace=True))
            #we use a different inputsize than the original paper
            #so conv2_x's stride is 1
            self.conv2_x = self._make_layer(block, 64, num_block[0], 1)
            self.conv3_x = self._make_layer(block, 128, num_block[1], 2)
            self.conv4_x = self._make_layer(block, 256, num_block[2], 2)
            self.conv5_x = self._make_layer(block, 512, num_block[3], 2)
            self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
            self.fc = nn.Linear(512 * block.expansion, num_classes)
    
        def _make_layer(self, block, out_channels, num_blocks, stride):
            """make resnet layers(by layer i didnt mean this 'layer' was the 
            same as a neuron netowork layer, ex. conv layer), one layer may 
            contain more than one residual block 
    
            Args:
                block: block type, basic block or bottle neck block
                out_channels: output depth channel number of this layer
                num_blocks: how many blocks per layer
                stride: the stride of the first block of this layer
            
            Return:
                return a resnet layer
            """
    
            # we have num_block blocks per layer, the first block 
            # could be 1 or 2, other blocks would always be 1
            strides = [stride] + [1] * (num_blocks - 1)
            layers = []
            for stride in strides:
                layers.append(block(self.in_channels, out_channels, stride))
                self.in_channels = out_channels * block.expansion
            
            return nn.Sequential(*layers)
    
        def forward(self, x):
            output = self.conv1(x)
            output = self.conv2_x(output)
            output = self.conv3_x(output)
            output = self.conv4_x(output)
            output = self.conv5_x(output)
            output = self.avg_pool(output)
            output = output.view(output.size(0), -1)
            output = self.fc(output)
    
            return output 
    

    实验结果

    1558405726665

    ResNeXt

    Aggregated Residual Transformations for Deep Neural Networks

    核心思想

    • 通过重复构建block来聚合一组相同拓扑结构的特征,并提出一个新维度”cardinality“。
    • ResNeXt结合了VGG、ResNet重复堆叠模块和Inception的split-transform-merge的思想。

    1558426698772

    以下三者等价,文章采用第三种实现,其使用了组卷积。

    1558426976613

    • 代码实现
    CARDINALITY = 32
    DEPTH = 4
    BASEWIDTH = 64
    
    class ResNextBottleNeckC(nn.Module):
        def __init__(self, in_channels, out_channels, stride):
            super().__init__()
    
            C = CARDINALITY #How many groups a feature map was splitted into
    
            #"""We note that the input/output width of the template is fixed as 
            #256-d (Fig. 3), We note that the input/output width of the template 
            #is fixed as 256-d (Fig. 3), and all widths are dou- bled each time 
            #when the feature map is subsampled (see Table 1)."""
            D = int(DEPTH * out_channels / BASEWIDTH) #number of channels per group
            self.split_transforms = nn.Sequential(
                nn.Conv2d(in_channels, C * D, kernel_size=1, groups=C, bias=False),
                nn.BatchNorm2d(C * D),
                nn.ReLU(inplace=True),
                nn.Conv2d(C * D, C * D, kernel_size=3, stride=stride, groups=C, padding=1, bias=False),
                nn.BatchNorm2d(C * D),
                nn.ReLU(inplace=True),
                nn.Conv2d(C * D, out_channels * 4, kernel_size=1, bias=False),
                nn.BatchNorm2d(out_channels * 4),
            )
    
            self.shortcut = nn.Sequential()
    
            if stride != 1 or in_channels != out_channels * 4:
                self.shortcut = nn.Sequential(
                    nn.Conv2d(in_channels, out_channels * 4, stride=stride, kernel_size=1, bias=False),
                    nn.BatchNorm2d(out_channels * 4)
                )
    
        def forward(self, x):
            return F.relu(self.split_transforms(x) + self.shortcut(x))
    

    网络架构

    1558426735630

    • 代码实现

      以下部分跟ResNet基本一致,重点关注ResNextBottleNeckC的实现。

    def resnext50():
        """ return a resnext50(c32x4d) network
        """
        return ResNext(ResNextBottleNeckC, [3, 4, 6, 3])
    
    class ResNext(nn.Module):
        def __init__(self, block, num_blocks, class_names=100):
            super().__init__()
            self.in_channels = 64
    
            self.conv1 = nn.Sequential(
                nn.Conv2d(3, 64, 3, stride=1, padding=1, bias=False),
                nn.BatchNorm2d(64),
                nn.ReLU(inplace=True)
            )
            self.conv2 = self._make_layer(block, num_blocks[0], 64, 1)
            self.conv3 = self._make_layer(block, num_blocks[1], 128, 2)
            self.conv4 = self._make_layer(block, num_blocks[2], 256, 2)
            self.conv5 = self._make_layer(block, num_blocks[3], 512, 2)
            self.avg = nn.AdaptiveAvgPool2d((1, 1))
            self.fc = nn.Linear(512 * 4, 100)
        
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)
            x = self.conv3(x)
            x = self.conv4(x)
            x = self.conv5(x)
            x = self.avg(x)
            x = x.view(x.size(0), -1)
            x = self.fc(x)
            return x
        
        def _make_layer(self, block, num_block, out_channels, stride):
            """Building resnext block
            Args:
                block: block type(default resnext bottleneck c)
                num_block: number of blocks per layer
                out_channels: output channels per block
                stride: block stride
            
            Returns:
                a resnext layer
            """
            strides = [stride] + [1] * (num_block - 1)
            layers = []
            for stride in strides:
                layers.append(block(self.in_channels, out_channels, stride))
                self.in_channels = out_channels * 4
    
            return nn.Sequential(*layers)
    

    实验结果

    1558427661493

    SENet

    Squeeze-and-Excitation Networks

    核心思想

    • 卷积操作融合了空间和特征通道信息。大量工作研究了空间部分,而本文重点关注特征通道的关系,并提出了Squeeze-and-Excitation(SE)block,对通道间的依赖关系进行建模,自适应校准通道方面的特征响应

    • SE block

      (F_{tr})表示transformation(一系列卷积操作);(F_{sq})表示squeeze,产生通道描述;(F_{ex})表示excitation,通过参数(W)来建模通道的重要性。(F_{scale})表示reweight,将excitation输出的权重逐乘以先前特征,完成特征重标定。

    1558429951926

    • SE-ResNet Module

      1558430934954

    • 代码实现

    class BottleneckResidualSEBlock(nn.Module):
        expansion = 4
    
        def __init__(self, in_channels, out_channels, stride, r=16):
            super().__init__()
    
            self.residual = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, 1),
                nn.BatchNorm2d(out_channels),
                nn.ReLU(inplace=True),
    
                nn.Conv2d(out_channels, out_channels, 3, stride=stride, padding=1),
                nn.BatchNorm2d(out_channels),
                nn.ReLU(inplace=True),
    
                nn.Conv2d(out_channels, out_channels * self.expansion, 1),
                nn.BatchNorm2d(out_channels * self.expansion),
                nn.ReLU(inplace=True)
            )
    
            self.squeeze = nn.AdaptiveAvgPool2d(1)
            self.excitation = nn.Sequential(
                nn.Linear(out_channels * self.expansion, out_channels * self.expansion // r),
                nn.ReLU(inplace=True),
                nn.Linear(out_channels * self.expansion // r, out_channels * self.expansion),
                nn.Sigmoid()
            )
    
            self.shortcut = nn.Sequential()
            if stride != 1 or in_channels != out_channels * self.expansion:
                self.shortcut = nn.Sequential(
                    nn.Conv2d(in_channels, out_channels * self.expansion, 1, stride=stride),
                    nn.BatchNorm2d(out_channels * self.expansion)
                )
    
        def forward(self, x):
    
            shortcut = self.shortcut(x)
    
            residual = self.residual(x)
            squeeze = self.squeeze(residual)
            squeeze = squeeze.view(squeeze.size(0), -1)
            excitation = self.excitation(squeeze)
            excitation = excitation.view(residual.size(0), residual.size(1), 1, 1)
    
            x = residual * excitation.expand_as(residual) + shortcut
    
            return F.relu(x)
    

    网络架构

    1558429222254

    • 代码实现
    def seresnet50():
        return SEResNet(BottleneckResidualSEBlock, [3, 4, 6, 3])
    
    class SEResNet(nn.Module):
    
        def __init__(self, block, block_num, class_num=100):
            super().__init__()
    
            self.in_channels = 64
    
            self.pre = nn.Sequential(
                nn.Conv2d(3, 64, 3, padding=1),
                nn.BatchNorm2d(64),
                nn.ReLU(inplace=True)
            )
    
            self.stage1 = self._make_stage(block, block_num[0], 64, 1)
            self.stage2 = self._make_stage(block, block_num[1], 128, 2)
            self.stage3 = self._make_stage(block, block_num[2], 256, 2)
            self.stage4 = self._make_stage(block, block_num[3], 516, 2)
    
            self.linear = nn.Linear(self.in_channels, class_num)
        
        def forward(self, x):
            x = self.pre(x)
    
            x = self.stage1(x)
            x = self.stage2(x)
            x = self.stage3(x)
            x = self.stage4(x)
    
            x = F.adaptive_avg_pool2d(x, 1)
            x = x.view(x.size(0), -1)
    
            x = self.linear(x)
    
            return x
    
        
        def _make_stage(self, block, num, out_channels, stride):
    
            layers = []
            layers.append(block(self.in_channels, out_channels, stride))
            self.in_channels = out_channels * block.expansion
    
            while num - 1:
                layers.append(block(self.in_channels, out_channels, 1))
                num -= 1
            
            return nn.Sequential(*layers)
    

    实验结果

    1558429318120

    总结

    • 小结
    1. LeNet[1998]:CNN的鼻祖。
    2. AlexNet[2012]:第一个深度CNN。
    3. ZFNet[2012]:通过DeconvNet可视化CNN学习到的特征。
    4. VGG[2014]:重复堆叠3x3卷积增加网络深度。
    5. GoogLeNet[2014]:提出Inception模块,在控制参数和计算量的前提下,增加网络的深度与宽度。
    6. ResNet[2015]:提出残差网络,解决了深层网络的优化问题。
    7. ResNeXt[2016]:ResNet和Inception的结合体,Inception中每个分支结构相同,无需人为设计。
    8. SENet[2017]:提出SE block,关注特征的通道关系。
    • 经典模型中结构、参数对比

    img

    参考

    • paper

    [1]LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

    [2]Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.

    [3]Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//European conference on computer vision. springer, Cham, 2014: 818-833.

    [4]Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.

    [5]Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.

    [6]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

    [7]Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.

    [8]Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.

    • blog

    ImageNet历年冠军和相关CNN模型

    残差网络ResNet笔记

    (二)计算机视觉四大基本任务(分类、定位、检测、分割)

    论文笔记:CNN经典结构2(WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet)

    论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    深度学习在计算机视觉领域(包括图像,视频,3-D点云,深度图)的应用一览

  • 相关阅读:
    Android核心分析之二十五Android GDI之共享缓冲区机制
    Android核心分析之二十四Android GDI之显示缓冲管理
    Android核心分析之二十三Andoird GDI之基本原理及其总体框架
    Android核心分析之二十二Android应用框架之Activity
    Android核心分析之二十一Android应用框架之AndroidApplication
    Android核心分析之二十Android应用程序框架之无边界设计意图
    Android核心分析之十九电话系统之GSMCallTacker
    Android核心分析之十八Android电话系统之RIL-Java
    NFS 服务器的配置
    tftp 服务器的配置
  • 原文地址:https://www.cnblogs.com/vincent1997/p/10901875.html
Copyright © 2020-2023  润新知