主要思想:
0、训练集格式:特征1,特征2,...特征n,类别
1、采用Python自带的数据结构字典递归的表示数据
2、ID3计算的信息增益是指类别的信息增益,因此每次都是计算类别的熵
3、ID3每次选择最优特征进行数据划分后都会消耗特征
4、当特征消耗到一定程度,可能会出现数据实例一样,但是类别不一样的情况,这个时候选不出最优特征而返回-1;
因此外面要捕获-1,要不然Python会以为最优特征是最后一列(类别)
#coding=utf-8 import operator from math import log import time import os, sys import string def createDataSet(trainDataFile): print trainDataFile dataSet = [] try: fin = open(trainDataFile) for line in fin: line = line.strip() cols = line.split(' ') row = [cols[1], cols[2], cols[3], cols[4], cols[5], cols[6], cols[7], cols[8], cols[9], cols[10], cols[0]] dataSet.append(row) #print row except: print 'Usage xxx.py trainDataFilePath outputTreeFilePath' sys.exit() labels = ['cip1', 'cip2', 'cip3', 'cip4', 'sip1', 'sip2', 'sip3', 'sip4', 'sport', 'domain'] print 'dataSetlen', len(dataSet) return dataSet, labels #calc shannon entropy def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for feaVec in dataSet: currentLabel = feaVec[-1] #每次都是计算类别的熵 if currentLabel not in labelCounts: labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key])/numEntries shannonEnt -= prob * log(prob, 2) return shannonEnt def splitDataSet(dataSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 #last col is label baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set(featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet) / float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) infoGain = baseEntropy -newEntropy if infoGain > bestInfoGain: bestInfoGain = infoGain bestFeature = i return bestFeature #feature is exhaustive, reture what you want label def majorityCnt(classList): classCount = {} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1 return max(classCount) def createTree(dataSet, labels): classList = [example[-1] for example in dataSet] if classList.count(classList[0]) ==len(classList): #all data is the same label return classList[0] if len(dataSet[0]) == 1: #all feature is exhaustive return majorityCnt(classList) bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] if(bestFeat == -1): #特征一样,但类别不一样,即类别与特征不相关,随机选第一个类别做分类结果 return classList[0] myTree = {bestFeatLabel:{}} del(labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels) return myTree def main(): data,label = createDataSet(sys.argv[1]) t1 = time.clock() myTree = createTree(data,label) t2 = time.clock() fout = open(sys.argv[2], 'w') fout.write(str(myTree)) fout.close() print 'execute for ',t2-t1 if __name__=='__main__': main()