• Python实现决策树ID3算法


    主要思想:

      0、训练集格式:特征1,特征2,...特征n,类别

      1、采用Python自带的数据结构字典递归的表示数据

      2、ID3计算的信息增益是指类别的信息增益,因此每次都是计算类别的熵

      3、ID3每次选择最优特征进行数据划分后都会消耗特征

      4、当特征消耗到一定程度,可能会出现数据实例一样,但是类别不一样的情况,这个时候选不出最优特征而返回-1;

         因此外面要捕获-1,要不然Python会以为最优特征是最后一列(类别)

    #coding=utf-8
    import operator
    from math import log
    import time
    import os, sys
    import string
    
    def createDataSet(trainDataFile):
        print trainDataFile
        dataSet = []
        try:
            fin = open(trainDataFile)
            for line in fin:
                line = line.strip()
                cols = line.split('	')
                row = [cols[1], cols[2], cols[3], cols[4], cols[5], cols[6], cols[7], cols[8], cols[9], cols[10], cols[0]]
                dataSet.append(row)
                #print row
        except:
            print 'Usage xxx.py trainDataFilePath outputTreeFilePath'
            sys.exit()
            labels = ['cip1', 'cip2', 'cip3', 'cip4', 'sip1', 'sip2', 'sip3', 'sip4', 'sport', 'domain']
        print 'dataSetlen', len(dataSet)
            return dataSet, labels
    
    #calc shannon entropy
    def calcShannonEnt(dataSet):
        numEntries = len(dataSet)
        labelCounts = {}
        for feaVec in dataSet:
            currentLabel = feaVec[-1]  #每次都是计算类别的熵
            if currentLabel not in labelCounts:
                labelCounts[currentLabel] = 0
            labelCounts[currentLabel] += 1
        shannonEnt = 0.0
        for key in labelCounts:
            prob = float(labelCounts[key])/numEntries
            shannonEnt -= prob * log(prob, 2)
        return shannonEnt
    
    def splitDataSet(dataSet, axis, value):
        retDataSet = []
        for featVec in dataSet:
            if featVec[axis] == value:
                reducedFeatVec = featVec[:axis]
                reducedFeatVec.extend(featVec[axis+1:])
                retDataSet.append(reducedFeatVec)
        return retDataSet
        
    def chooseBestFeatureToSplit(dataSet):
        numFeatures = len(dataSet[0]) - 1    #last col is label
        baseEntropy = calcShannonEnt(dataSet)
        bestInfoGain = 0.0
        bestFeature = -1
        for i in range(numFeatures):
            featList = [example[i] for example in dataSet]
            uniqueVals = set(featList)
            newEntropy = 0.0
            for value in uniqueVals:
                subDataSet = splitDataSet(dataSet, i, value)
                prob = len(subDataSet) / float(len(dataSet))
                newEntropy += prob * calcShannonEnt(subDataSet)
            infoGain = baseEntropy -newEntropy
            if infoGain > bestInfoGain:
                bestInfoGain = infoGain
                bestFeature = i
        return bestFeature
                
    #feature is exhaustive, reture what you want label
    def majorityCnt(classList):
        classCount = {}
        for vote in classList:
            if vote not in classCount.keys():
                classCount[vote] = 0
            classCount[vote] += 1
        return max(classCount)         
        
    def createTree(dataSet, labels):
        classList = [example[-1] for example in dataSet]
        if classList.count(classList[0]) ==len(classList):    #all data is the same label
            return classList[0]
        if len(dataSet[0]) == 1:    #all feature is exhaustive
            return majorityCnt(classList)
        bestFeat = chooseBestFeatureToSplit(dataSet)
        bestFeatLabel = labels[bestFeat]
        if(bestFeat == -1):        #特征一样,但类别不一样,即类别与特征不相关,随机选第一个类别做分类结果
            return classList[0] 
        myTree = {bestFeatLabel:{}}
        del(labels[bestFeat])
        featValues = [example[bestFeat] for example in dataSet]
        uniqueVals = set(featValues)
        for value in uniqueVals:
            subLabels = labels[:]
            myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
        return myTree
        
    def main():
        data,label = createDataSet(sys.argv[1])
        t1 = time.clock()
        myTree = createTree(data,label)
        t2 = time.clock()
        fout = open(sys.argv[2], 'w')
        fout.write(str(myTree))
        fout.close()
        print 'execute for ',t2-t1
    if __name__=='__main__':
        main()
  • 相关阅读:
    【bzoj1176】[Balkan2007]Mokia
    【bzoj1503】[NOI2004]郁闷的出纳员
    C#设置和获取系统环境变量
    结伙创业指南及翻脸法则
    Unity3D_(游戏)卡牌03_选关界面
    Unity3D_(游戏)卡牌02_主菜单界面
    Unity3D_(游戏)卡牌01_启动屏界面
    Unity3D_(游戏)跳一跳超简单制作过程
    如何将项目托管到Github上
    Android_(游戏)打飞机06:后续
  • 原文地址:https://www.cnblogs.com/vincent-vg/p/6740635.html
Copyright © 2020-2023  润新知