• 数据结构——二叉树(Binary Trees)


    非线性数据结构

    二叉搜索树(Binary Search Tree)

    树的密度=结点数/高度

    二叉树类

     1 #pragma once
     2 
     3 class stnode
     4 {
     5     public:
     6         int nodeValue;   // node data
     7 
     8         stnode *left, *right, *parent; // child pointers and pointer to the node's parent
     9 
    10             // constructor
    11         stnode (const int item, stnode *lptr = NULL, stnode*rptr = NULL, stnode *pptr =   NULL):
    12         nodeValue(item), left(lptr), right(rptr), parent(pptr)
    13    {}
    14 };
    15 
    16 class stree
    17 {
    18 public:
    19     stree(); // constructor. initialize root to NULL and size to 0
    20     ~stree();  // destructor
    21     bool insert(const int item);
    22     void Output(); 
    23 
    24 private:
    25     stnode *root; // pointer to tree root
    26     int treeSize; // number of elements in the tree
    27     stnode *creatSTNode(const int item, stnode *lptr, stnode *rptr,  stnode*pptr);
    28 };
    29 
    30 stnode * stree::creatSTNode (const int item, stnode *lptr, stnode *rptr, stnode *pptr)
    31 {
    32     stnode*newNode;
    33 
    34     // initialize the data and all pointers
    35     newNode = new stnode (item, lptr, rptr, pptr);
    36 
    37     return newNode;
    38 }

    完全二叉树(complete tree):

      所有非叶子节点有两个子结点或一个左子结点。按从左到右顺序建树。

    包含n个元素的完全二叉树  h=(int)(log2(n))

    遍历:

    1、层次遍历

      按层从左到右遍历。

     1 //层序遍历二叉树
     2 void stree::LevelByLevel(stnode *root) 
     3 { 
     4     std::queue<stnode*> q;//建队
     5     q.push(root);//根节点入队
     6     stnode *cur; 
     7     while(!q.empty()) 
     8     { 
     9         cur=q.front(); //获得队列的首元素
    10         q.pop(); //首元素出队
    11         temp.Format("%d ",cur->nodeValue); //输出结点的值
    12         str+=temp;
    13         
    14         if(cur->left!=NULL) //若结点的左子树不空
    15         { 
    16             q.push(cur->left); 
    17         } 
    18         if(cur->right!=NULL)//若结点的右子树不空    
    19         { 
    20             q.push(cur->right); 
    21         } 
    22     } 
    23 }
    View Code

    2、中序遍历(LDR)

      先访问左结点数据,直到左节点为空则访问中间(父结点)数据,再访问右子结点数据。

    盗一张百度的图:

    3、前序遍历(DLR)

      先访问父结点数据,再访问左子结点,最后右子结点。到达即访问,根结点在遍历的第一个。

    上图的前序遍历结果为:ABDGJEHCFI

    4、后序遍历(LRD)

      先访问左子结点数据,再访问右子结点,最后父结点。根结点在遍历的最后一个。

    上图的前序遍历结果为:JGDHEBIFCA

    树的递归

    1、递归遍历叶子结点

    void CountLeaf(tnode<T> *t,int &count)
    {
        if(t!=NULL)
        {
            if(t->left==NULL&&t->right==NULL)
                count++;
            CountLeaf(t->left,count);
            CountLeaf(t->right,count);
        }
    }

    2、树的高度

     1 int depth(tnode<T> *t)
     2 {
     3     int depthleft,depthright,depthval;
     4     if(t==NULL)
     5         depthval=-1;
     6     else
     7     {
     8         depthleft=depth(t->left);
     9         depthright=depth(t->right);
    10         depthval=1+(depthleft>depthright? depthleft:depthright);
    11     }
    12     return depthval;
    13 }

    3、删除整树

    1 void deleteTree(tnode<T> *t)
    2 {
    3     if(t!=NULL)
    4     {
    5         deleteTree(t->left);
    6         deleteTree(t->right);
    7         delete t;
    8     }
    9 }

     

    树形输出:

     1 #include <iomanip>        // for setw()
     2 #include <strstream>        // for format conversion
     3 #include <string>            // node data formatted as a string
     4 #include <queue>
     5 #include <utility>
     6 
     7 using namespace std;
     8 
     9 class tnodeShadow
    10 {
    11     public:
    12         string nodeValueStr;    // formatted node value
    13         int level,column;
    14         tnodeShadow *left, *right;
    15         
    16         tnodeShadow ()
    17         {}
    18 };
    /*
    tnodeShadow *buildShadowTree(AVLnode *t, int level, int& column);
    void displayTree(int maxCharacters);
    void deleteShadowTree(tnodeShadow *t);
    */
    tnodeShadow *AVLtree::buildShadowTree(AVLnode *t, int level, int& column)
    {            
        tnodeShadow *newNode = NULL;
        char text[80];
        ostrstream ostr(text,80);
    
        if (t != NULL)
        {
            newNode = new tnodeShadow;
    
            tnodeShadow *newLeft = buildShadowTree(t->left, level+1, column);
            newNode->left = newLeft;
    
            ostr << t->nodeValue << ends;
            newNode->nodeValueStr = text;
            newNode->level = level;
            newNode->column = column;
    
            column++;
    
            tnodeShadow *newRight = buildShadowTree(t->right, level+1, column);
            newNode->right = newRight;
        }
    
        return newNode;
    }
    
    void AVLtree::displayTree(int maxCharacters)
    {
        string label;
        int level = 0, column = 0;
        int colWidth = maxCharacters + 1;
    
        int currLevel = 0, currCol = 0;
    
        if (treeSize == 0)
            return;
    
        tnodeShadow *shadowRoot = buildShadowTree(root, level, column);
    
        tnodeShadow *currNode;
    
        queue<tnodeShadow *> q;
    
        q.push(shadowRoot);
      
        while(!q.empty())
        {
            currNode = q.front();
            q.pop();
    
            if (currNode->level > currLevel)
            {
                currLevel = currNode->level;
                currCol = 0;
                cout << endl;
            }
    
            if(currNode->left != NULL)
                q.push(currNode->left);
    
            if(currNode->right != NULL)
                q.push(currNode->right);
    
            if (currNode->column > currCol)
            {
                cout << setw((currNode->column-currCol)*colWidth) << " ";
                currCol = currNode->column;
            }
            cout << setw(colWidth) << currNode->nodeValueStr;
            currCol++;
        }
        cout << endl;
    
        deleteShadowTree(shadowRoot);
    }
    
    void AVLtree::deleteShadowTree(tnodeShadow *t)
    {
        if (t != NULL)
        {
            deleteShadowTree(t->left);
            deleteShadowTree(t->right);
            delete t;
        }
    }
  • 相关阅读:
    sstream && istringstream && ostringstream
    动态规划
    状态空间搜索(转)
    数学知多少
    挣得值分析法
    adobe acrobat pro 8.0/8.1 激活方法
    ZooKeeper Overview
    Java网络编程从入门到精通(25):创建ServerSocket对象
    使用 Spring 2.5 基于注解驱动的 Spring MVC(二)
    一起偶遇网随机视频测试版
  • 原文地址:https://www.cnblogs.com/verlen11/p/4198908.html
Copyright © 2020-2023  润新知