• 「网络流 24 题」最长 k 可重区间集


    给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度.

    区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T$连边$(k,0)$. 对于每个区间$(l,r)$, $l$与$r$连边$(1,l-r)$.

    最小费用相反数就为最大长度

    #include <iostream>
    #include <sstream>
    #include <algorithm>
    #include <cstdio>
    #include <math.h>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <string.h>
    #include <bitset>
    #include <unordered_map>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    #ifdef ONLINE_JUDGE
    const int N = 1e6+10;
    #else
    const int N = 999;
    #endif
    
    int n, m, k, S, T;
    struct _ {int from,to,w,f;};
    vector<_> E;
    vector<int> g[N];
    int a[N], pre[N], inq[N], d[N];
    int mf,mc;
    queue<int> q;
    void add(int x, int y, int c, int w) {
        g[x].pb(E.size());
        E.pb({x,y,c,w});
        g[y].pb(E.size());
        E.pb({y,x,0,-w});
    }
    void mfmc() {
    	mf=mc=0;
        while (1) {
            REP(i,1,T) a[i]=d[i]=INF,inq[i]=0;
            q.push(S),d[S]=0;
            while (!q.empty()) {
                int x=q.front(); q.pop();
                inq[x] = 0;
                for (auto t:g[x]) {
                    auto e=E[t];
                    if (e.w>0&&d[e.to]>d[x]+e.f) {
                        d[e.to]=d[x]+e.f;
                        pre[e.to]=t;
                        a[e.to]=min(a[x],e.w);
                        if (!inq[e.to]) {
                            inq[e.to]=1;
                            q.push(e.to);
                        }
                    }
                }
            }
            if (a[T]==INF) break;
            for (int u=T;u!=S;u=E[pre[u]].from) {
                E[pre[u]].w-=a[T];
                E[pre[u]^1].w+=a[T];
            }
            mf+=a[T],mc+=a[T]*d[T];
        }
    }
    
    
    int b[N], l[N], r[N];
    int main() {
    	scanf("%d%d", &n, &k);
    	REP(i,1,n) {
    		scanf("%d%d",l+i,r+i);
    		b[++*b]=l[i],b[++*b]=r[i];
    	}
    	sort(b+1,b+1+*b),*b=unique(b+1,b+1+*b)-b-1;
    	REP(i,1,n) {
    		l[i]=lower_bound(b+1,b+1+*b,l[i])-b;
    		r[i]=lower_bound(b+1,b+1+*b,r[i])-b;
    	}
    	S = *b+1, T = S+1;
    	add(S,1,k,0),add(*b,T,k,0);
    	REP(i,2,*b) add(i-1,i,k,0);
    	REP(i,1,n) add(l[i],r[i],1,-b[r[i]]+b[l[i]]);
    	mfmc();
    	printf("%d
    ", -mc);
    }
    
  • 相关阅读:
    冒泡排序
    Bootstrap fileinput v1.0(ssm版)
    Bootstrap table后端分页(ssm版)
    Bootstrap table前端分页(ssm版)
    北京鱼乐贝贝面试题
    通过前端控制器源码分析springmvc的执行过程
    java Pattern(正则)类
    ssm所需要的pom(jre8、tomcat8、spring4)
    Java 流(Stream)、文件(File)和IO
    idea构建一个简单的maven_web项目
  • 原文地址:https://www.cnblogs.com/uid001/p/10990261.html
Copyright © 2020-2023  润新知