• 牛客 82E 无向图中的最短距离 (bitset,bfs)


    有一个n个点的无向图,有m次查询,每次查询给出一些(xi,yi)

    令dist(x,y)表示x和y点在图中最短距离,dist(x,x)=0,如果x,y不连通则dist(x,y) = inf

    每次查询图中有多少个点v与至少一个这次询问给出的(xi,yi)满足dist(v,xi)<=yi

    #include <iostream>
    #include <sstream>
    #include <algorithm>
    #include <cstdio>
    #include <math.h>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <string.h>
    #include <bitset>
    #define REP(i,a,n) for(int i=a;i<=n;++i)
    #define PER(i,a,n) for(int i=n;i>=a;--i)
    #define hr putchar(10)
    #define pb push_back
    #define lc (o<<1)
    #define rc (lc|1)
    #define mid ((l+r)>>1)
    #define ls lc,l,mid
    #define rs rc,mid+1,r
    #define x first
    #define y second
    #define io std::ios::sync_with_stdio(false)
    #define endl '
    '
    #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
    ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
    ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
    ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
    inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
    //head
    
    
    
    const int N = 1e3+10;
    int n, m, q, vis[N], d[N];
    vector<int> g[N];
    bitset<N> f[N][N], ans;
    queue<int> que;
    
    int main() {
    	scanf("%d%d%d", &n, &m, &q);
    	REP(i,1,m) {
    		int u, v;
    		scanf("%d%d", &u, &v);
    		g[u].pb(v),g[v].pb(u);
    	}
    	REP(i,1,n) {
    		REP(j,1,n) vis[j]=0,d[j]=n;
    		vis[i] = 1, d[i] = 0, que.push(i);
    		while (que.size()) {
    			int u = que.front(); que.pop();
    			for (int v:g[u]) {
    				d[v] = min(d[v], d[u]+1);
                    if (vis[v]) continue;
    				vis[v] = 1;
    				que.push(v);
    			}
    		}
    		REP(j,1,n) f[i][d[j]].set(j);
    		REP(j,1,n-1) f[i][j]|=f[i][j-1];
    	}
    	while (q--) {
    		int k;
    		scanf("%d", &k);
    		ans.reset();
    		while (k--) {
    			int x, y;
    			scanf("%d%d", &x, &y);
    			ans |= f[x][min(y,n-1)];
    		}
    		printf("%d
    ", (int)ans.count());
    	}
    }
    
  • 相关阅读:
    状态同步和帧同步
    SVN和Git的使用
    客户端知识点
    客户端性能优化
    H5游戏开发面试经验
    2.0 pomelo-treasure官方demo的使用
    1.0 pomelo环境的搭建和部署
    python 网络编程
    冒泡排序
    面向对象-反射和元类
  • 原文地址:https://www.cnblogs.com/uid001/p/10935300.html
Copyright © 2020-2023  润新知