题意:有一个n(n<=1000)位密码锁,每位都是0~9,可以循环旋转。每次可以让1~3个相邻数字同时往上或者往下转一格。输入初始状态和终止状态(长度不超过1000),问最少要转几次。
分析:
1、从左往右依次使各个数字与终止状态相同。
2、dp[cur][x1][x2][x3]表示当前研究数字为第cur位,x1为a[cur],x2为a[cur + 1],x3为a[cur + 2],在当前状态下,使所有数字变成终止状态的最小旋转次数。
3、研究第cur位时,第cur+1位和第cur+2位也可以随之一起转,枚举当前所有的旋转情况,并分别讨论向上和向下旋转两种情况。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 1000 + 10; const int MAXT = 10000 + 10; using namespace std; char aa[MAXN], bb[MAXN]; int a[MAXN], b[MAXN]; int dp[MAXN][15][15][15]; int len; int getUpStep(int st, int et){//向上翻转的步数,向上转数字变大 return (et - st + 10) % 10; } int getDownStep(int st, int et){ return (st - et + 10) % 10; } int upNowpos(int st, int length){ return (st + length) % 10; } int downNowpos(int st, int length){//从st向下翻转length步变成的数字 return (st - length + 10) % 10; } int dfs(int cur, int x1, int x2, int x3){ if(dp[cur][x1][x2][x3] != -1) return dp[cur][x1][x2][x3]; if(cur == len) return 0; int ans = INT_INF; int upstep = getUpStep(x1, b[cur]), downstep = getDownStep(x1, b[cur]); for(int i = 0; i <= upstep; ++i){//枚举第cur+1位可以跟着第cur位一起向上旋转的步数 for(int j = 0; j <= i; ++j){//枚举第cur+2位可以跟着第cur位和第cur+1位一起向上旋转的步数 ans = Min(ans, dfs(cur + 1, upNowpos(x2, i), upNowpos(x3, j), a[cur + 3]) + upstep); } } for(int i = 0; i <= downstep; ++i){//向下转 for(int j = 0; j <= i; ++j){ ans = Min(ans, dfs(cur + 1, downNowpos(x2, i), downNowpos(x3, j), a[cur + 3]) + downstep); } } return dp[cur][x1][x2][x3] = ans; } int main(){ while(scanf("%s%s", aa, bb) == 2){ memset(dp, -1, sizeof dp); len = strlen(aa); for(int i = 0; i < len; ++i) a[i] = aa[i] - '0'; for(int i = 0; i < len; ++i) b[i] = bb[i] - '0'; a[len] = a[len + 1] = a[len + 2] = 0; b[len] = b[len + 1] = b[len + 2] = 0; printf("%d\n", dfs(0, a[0], a[1], a[2])); } return 0; }