Source:
Description:
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 with 0 for all i and ak>0. Then N is palindromic if and only if ai=ak−i for all i. Zero is written 0 and is also palindromic by definition.
Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )
Given any positive integer, you are supposed to find its paired palindromic number.
Input Specification:
Each input file contains one test case which gives a positive integer no more than 1000 digits.
Output Specification:
For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:
A + B = C
where
A
is the original number,B
is the reversedA
, andC
is their sum.A
starts being the input number, and this process ends untilC
becomes a palindromic number -- in this case we print in the last lineC is a palindromic number.
; or if a palindromic number cannot be found in 10 iterations, printNot found in 10 iterations.
instead.
Sample Input 1:
97152
Sample Output 1:
97152 + 25179 = 122331 122331 + 133221 = 255552 255552 is a palindromic number.
Sample Input 2:
196
Sample Output 2:
196 + 691 = 887 887 + 788 = 1675 1675 + 5761 = 7436 7436 + 6347 = 13783 13783 + 38731 = 52514 52514 + 41525 = 94039 94039 + 93049 = 187088 187088 + 880781 = 1067869 1067869 + 9687601 = 10755470 10755470 + 07455701 = 18211171 Not found in 10 iterations.
Keys:
- 快乐模拟
Attention:
- under algorithm, reverse(s.begin(),s.end());
Code:
1 /* 2 Data: 2019-05-24 20:58:33 3 Problem: PAT_A1136#A Delayed Palindrome 4 AC: 25:40 5 6 题目大意: 7 非回文数转化为回文数; 8 while(! palindrome){ 9 1.Reverse 10 2.add 11 输入: 12 给一个不超过1000位的正整数 13 输出: 14 给出每次循环的加法操作,最多10次循环 15 */ 16 17 #include<cstdio> 18 #include<string> 19 #include<iostream> 20 #include<algorithm> 21 using namespace std; 22 23 int IsPal(string s) 24 { 25 for(int i=0; i<s.size()/2; i++) 26 if(s[i]!=s[s.size()-1-i]) 27 return 0; 28 return 1; 29 } 30 31 string Add(string s1, string s2) 32 { 33 string s=""; 34 int num=0; 35 for(int i=s1.size()-1; i>=0; i--) 36 { 37 num += (s1[i]-'0')+(s2[i]-'0'); 38 s += (num%10+'0'); 39 num /= 10; 40 } 41 while(num != 0) 42 { 43 s += (num%10+'0'); 44 num /= 10; 45 } 46 reverse(s.begin(),s.end()); 47 return s; 48 } 49 50 int main() 51 { 52 #ifdef ONLINE_JUDGE 53 #else 54 freopen("Test.txt", "r", stdin); 55 #endif 56 57 string s,t; 58 cin >> s; 59 int pt=0; 60 while(pt<10) 61 { 62 if(IsPal(s)) 63 break; 64 t=s; 65 reverse(t.begin(),t.end()); 66 cout << s << " + "<< t << " = "; 67 s=Add(s,t); 68 cout << s << endl; 69 pt++; 70 } 71 if(pt<10) 72 cout << s << " is a palindromic number."; 73 else 74 printf("Not found in 10 iterations."); 75 76 return 0; 77 }
转载于:https://www.cnblogs.com/blue-lin/p/10920330.html