在正文开始之前需要先搞明白以下几个问题:
1. 什么是DMA?
DMA的中文名称叫做 直接内存访问,是一种不需要CPU参与,就能实现数据搬移的技术(从一个地址空间到另一个地址空间)。
2. DMA有什么用?
一定程度上解放CPU,对于实现 高效嵌入式系统 与 加速网络数据处理 有极其重要的作用。
3. DMA的实现简述
在实现DMA传输时,是由DMA控制器直接掌管总线,因此,存在着一个总线控制权转移问题。即DMA传输前,CPU要把总线控制权交给DMA控制器,而在结束DMA传输后,DMA控制器应立即把总线控制权再交回给CPU。一个完整的DMA传输过程必须经过DMA请求、DMA响应、DMA传输、DMA结束 4个步骤。
scatter-gather DMA 与 block DMA
传统的block DMA 一次只能传输物理上连续的一个块的数据, 完成传输后发起中断。而scatter-gather DMA允许一次传输多个物理上不连续的块,完成传输后只发起一次中断。
传统的block DMA像这样:
先进的scatter-gather DMA像这样:
这样做的好处是直观的,大大减少了中断的次数,提高了数据传输的效率。
scatter-gather DMA的应用
dpdk在ip分片的实现中,采用了一种称作零拷贝的技术。而这种实现方式的底层,正是由scatter-gather DMA支撑的。dpdk的分片包采用了链式管理,同一个数据包的数据,分散存储在不连续的块中(mbuf结构)。这就要求DMA一次操作,需要从不连续的多个块中搬移数据。附上e1000驱动发包部分代码:
uint16_t eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) { //e1000驱动部分代码 ... m_seg = tx_pkt; do { txd = &txr[tx_id]; txn = &sw_ring[txe->next_id]; if (txe->mbuf != NULL) rte_pktmbuf_free_seg(txe->mbuf); txe->mbuf = m_seg; /* * Set up Transmit Data Descriptor. */ slen = m_seg->data_len; buf_dma_addr = rte_mbuf_data_iova(m_seg); txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr); txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen); txd->upper.data = rte_cpu_to_le_32(popts_spec); txe->last_id = tx_last; tx_id = txe->next_id; txe = txn; m_seg = m_seg->next; } while (m_seg != NULL); /* * The last packet data descriptor needs End Of Packet (EOP) */ cmd_type_len |= E1000_TXD_CMD_EOP; txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used); txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used); ... }
---------------------
版权声明:本文为CSDN博主「Alan. W」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_38006908/article/details/87375404