• 吴裕雄--天生自然python Google深度学习框架:经典卷积神经网络模型


     

     

     

     

     

     

    import tensorflow as tf
    
    INPUT_NODE = 784
    OUTPUT_NODE = 10
    
    IMAGE_SIZE = 28
    NUM_CHANNELS = 1
    NUM_LABELS = 10
    
    CONV1_DEEP = 32
    CONV1_SIZE = 5
    
    CONV2_DEEP = 64
    CONV2_SIZE = 5
    
    FC_SIZE = 512
    
    def inference(input_tensor, train, regularizer):
        with tf.variable_scope('layer1-conv1'):
            conv1_weights = tf.get_variable(
                "weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],
                initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))
            conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
            relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
    
        with tf.name_scope("layer2-pool1"):
            pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="SAME")
    
        with tf.variable_scope("layer3-conv2"):
            conv2_weights = tf.get_variable(
                "weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],
                initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))
            conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
            relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
    
        with tf.name_scope("layer4-pool2"):
            pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            pool_shape = pool2.get_shape().as_list()
            nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
            reshaped = tf.reshape(pool2, [pool_shape[0], nodes])
    
        with tf.variable_scope('layer5-fc1'):
            fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],
                                          initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))
            fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))
    
            fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
            if train: fc1 = tf.nn.dropout(fc1, 0.5)
    
        with tf.variable_scope('layer6-fc2'):
            fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],
                                          initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
            fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))
            logit = tf.matmul(fc1, fc2_weights) + fc2_biases
    
        return logit
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import LeNet5_infernece
    import os
    import numpy as np
    
    BATCH_SIZE = 100
    LEARNING_RATE_BASE = 0.01
    LEARNING_RATE_DECAY = 0.99
    REGULARIZATION_RATE = 0.0001
    TRAINING_STEPS = 6000
    MOVING_AVERAGE_DECAY = 0.99
    
    def train(mnist):
        # 定义输出为4维矩阵的placeholder
        x = tf.placeholder(tf.float32, [
                BATCH_SIZE,
                LeNet5_infernece.IMAGE_SIZE,
                LeNet5_infernece.IMAGE_SIZE,
                LeNet5_infernece.NUM_CHANNELS],
            name='x-input')
        y_ = tf.placeholder(tf.float32, [None, LeNet5_infernece.OUTPUT_NODE], name='y-input')
        
        regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
        y = LeNet5_infernece.inference(x,False,regularizer)
        global_step = tf.Variable(0, trainable=False)
    
        # 定义损失函数、学习率、滑动平均操作以及训练过程。
        variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
        variables_averages_op = variable_averages.apply(tf.trainable_variables())
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
        cross_entropy_mean = tf.reduce_mean(cross_entropy)
        loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
        learning_rate = tf.train.exponential_decay(
            LEARNING_RATE_BASE,
            global_step,
            mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
            staircase=True)
    
        train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
        with tf.control_dependencies([train_step, variables_averages_op]):
            train_op = tf.no_op(name='train')
            
        # 初始化TensorFlow持久化类。
        saver = tf.train.Saver()
        with tf.Session() as sess:
            tf.global_variables_initializer().run()
            for i in range(TRAINING_STEPS):
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
    
                reshaped_xs = np.reshape(xs, (
                    BATCH_SIZE,
                    LeNet5_infernece.IMAGE_SIZE,
                    LeNet5_infernece.IMAGE_SIZE,
                    LeNet5_infernece.NUM_CHANNELS))
                _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})
    
                if i % 1000 == 0:
                    print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
    
    def main(argv=None):
        mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
        train(mnist)
    
    if __name__ == '__main__':
        main()

     

     

     

     

     

     

     

     

     

     

     

     

     

  • 相关阅读:
    爬虫基本库request使用—爬取猫眼电影信息
    Linux系统下Mysql安装与配置
    Centos7安装配置Nginx
    VUE中使用geetest滑动验证码
    python中使用redis发布订阅者模型
    Django中使用极验Geetest滑动验证码
    Redis的常见用法
    微信服务号消息推送
    Python支付宝在线支付API
    Django Rest Framework(二)
  • 原文地址:https://www.cnblogs.com/tszr/p/12051571.html
Copyright © 2020-2023  润新知