• 吴裕雄 python深度学习与实践(16)


    import struct
    import  numpy as np
    import matplotlib.pyplot as plt
    
    dateMat = np.ones((7,7))
    
    kernel = np.array([[2,1,1],[3,0,1],[1,1,0]])
    
    def convolve(dateMat,kernel):
        m,n = dateMat.shape
        km,kn = kernel.shape
        newMat = np.ones(((m - km + 1),(n - kn + 1)))
        tempMat = np.ones(((km),(kn)))
        for row in range(m - km + 1):
            for col in range(n - kn + 1):
                for m_k in range(km):
                    for n_k in range(kn):
                        tempMat[m_k,n_k] = dateMat[(row + m_k),(col + n_k)] * kernel[m_k,n_k]
                newMat[row,col] = np.sum(tempMat)
    
        return newMat
    
    newMat = convolve(dateMat,kernel)
    print(newMat)

    import tensorflow as tf
    
    input1 = tf.Variable(tf.random_normal([1, 3, 3, 1]))
    filter1 = tf.Variable(tf.ones([1, 1, 1, 1]))
    
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding='VALID')
        print(sess.run(conv2d))

    import tensorflow as tf
    
    input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
    filter1 = tf.Variable(tf.ones([3, 3, 5, 1]))
    
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding='VALID')
        print(sess.run(conv2d))

    import tensorflow as tf
    
    input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
    filter1 = tf.Variable(tf.ones([3, 3, 5, 1]))
    
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding='SAME')
        print(sess.run(conv2d))

    import tensorflow as tf
    
    input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
    filter1 = tf.Variable(tf.ones([3, 3, 5, 1]))
    
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 2, 2, 1], padding='SAME')
        print(sess.run(conv2d))

    import cv2
    import numpy as np
    import tensorflow as tf
    
    img = cv2.imread("D:\F\TensorFlow_deep_learn\data\lena.jpg")
    img = np.array(img,dtype=np.float32)
    x_image=tf.reshape(img,[1,512,512,3])
    
    filter1 = tf.Variable(tf.ones([7, 7, 3, 1]))
    
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding='SAME')
        res_image = sess.run(tf.reshape(res,[256,256]))/128 + 1
    
    cv2.imshow("lover",res_image.astype('uint8'))
    cv2.waitKey()
    import cv2
    import numpy as np
    import tensorflow as tf
    
    img = cv2.imread("D:\F\TensorFlow_deep_learn\data\lena.jpg")
    img = np.array(img,dtype=np.float32)
    x_image=tf.reshape(img,[1,512,512,3])
    
    filter1 = tf.Variable(tf.ones([11, 11, 3, 1]))
    
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding='SAME')
        res_image = sess.run(tf.reshape(res,[256,256]))/128 + 1
    
    cv2.imshow("lover",res_image.astype('uint8'))
    cv2.waitKey()
    import tensorflow as tf
    
    data=tf.constant([
            [[3.0,2.0,3.0,4.0],
            [2.0,6.0,2.0,4.0],
            [1.0,2.0,1.0,5.0],
            [4.0,3.0,2.0,1.0]]
            ])
    data = tf.reshape(data,[1,4,4,1])
    maxPooling=tf.nn.max_pool(data, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
    
    with tf.Session() as sess:
        print(sess.run(maxPooling))

    import cv2
    import numpy as np
    import tensorflow as tf
    
    img = cv2.imread("D:\F\TensorFlow_deep_learn\data\lena.jpg")
    img = np.array(img,dtype=np.float32)
    x_image=tf.reshape(img,[1,512,512,3])
    
    filter1 = tf.Variable(tf.ones([7, 7, 3, 1]))
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding='SAME')
        res = tf.nn.max_pool(res, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
        res_image = sess.run(tf.reshape(res,[128,128]))/128 + 1
    
    cv2.imshow("lover",res_image.astype('uint8'))
    cv2.waitKey()
    import time
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    # 声明输入图片数据,类别
    x = tf.placeholder('float', [None, 784])
    y_ = tf.placeholder('float', [None, 10])
    # 输入图片数据转化
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    
    #第一层卷积层,初始化卷积核参数、偏置值,该卷积层5*5大小,一个通道,共有6个不同卷积核
    filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
    bias1 = tf.Variable(tf.truncated_normal([6]))
    conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
    h_conv1 = tf.nn.sigmoid(conv1 + bias1)
    
    maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
    filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
    bias2 = tf.Variable(tf.truncated_normal([16]))
    conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
    h_conv2 = tf.nn.sigmoid(conv2 + bias2)
    
    maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
    filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
    bias3 = tf.Variable(tf.truncated_normal([120]))
    conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
    h_conv3 = tf.nn.sigmoid(conv3 + bias3)
    
    # 全连接层
    # 权值参数
    W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
    # 偏置值
    b_fc1 = tf.Variable(tf.truncated_normal([80]))
    # 将卷积的产出展开
    h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
    # 神经网络计算,并添加sigmoid激活函数
    h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    # 输出层,使用softmax进行多分类
    W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
    b_fc2 = tf.Variable(tf.truncated_normal([10]))
    y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
    # 损失函数
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
    # 使用GDO优化算法来调整参数
    train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)
    
    sess = tf.InteractiveSession()
    # 测试正确率
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    # 所有变量进行初始化
    sess.run(tf.initialize_all_variables())
    
    # 获取mnist数据
    mnist_data_set = input_data.read_data_sets("D:\F\TensorFlow_deep_learn\MNIST\", one_hot=True)
    
    # 进行训练
    start_time = time.time()
    for i in range(20000):
        # 获取训练数据
        batch_xs, batch_ys = mnist_data_set.train.next_batch(200)
    
        # 每迭代100个 batch,对当前训练数据进行测试,输出当前预测准确率
        if i % 2 == 0:
            train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
            print("step %d, training accuracy %g" % (i, train_accuracy))
            # 计算间隔时间
            end_time = time.time()
            print('time: ', (end_time - start_time))
            start_time = end_time
        # 训练数据
        train_step.run(feed_dict={x: batch_xs, y_: batch_ys})
    
    # 关闭会话
    sess.close()

    import time
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    # 声明输入图片数据,类别
    x = tf.placeholder('float', [None, 784])
    y_ = tf.placeholder('float', [None, 10])
    # 输入图片数据转化
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    
    #第一层卷积层,初始化卷积核参数、偏置值,该卷积层5*5大小,一个通道,共有6个不同卷积核
    filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
    bias1 = tf.Variable(tf.truncated_normal([6]))
    conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
    h_conv1 = tf.nn.relu(conv1 + bias1)
    
    maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
    filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
    bias2 = tf.Variable(tf.truncated_normal([16]))
    conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
    h_conv2 = tf.nn.relu(conv2 + bias2)
    
    maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
    filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
    bias3 = tf.Variable(tf.truncated_normal([120]))
    conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
    h_conv3 = tf.nn.relu(conv3 + bias3)
    
    # 全连接层
    # 权值参数
    W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
    # 偏置值
    b_fc1 = tf.Variable(tf.truncated_normal([80]))
    # 将卷积的产出展开
    h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
    # 神经网络计算,并添加relu激活函数
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    # 输出层,使用softmax进行多分类
    W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
    b_fc2 = tf.Variable(tf.truncated_normal([10]))
    y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
    # 损失函数
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
    # 使用GDO优化算法来调整参数
    train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)
    
    sess = tf.InteractiveSession()
    # 测试正确率
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    # 所有变量进行初始化
    sess.run(tf.initialize_all_variables())
    
    # 获取mnist数据
    mnist_data_set = input_data.read_data_sets("D:\F\TensorFlow_deep_learn\MNIST\", one_hot=True)
    
    # 进行训练
    start_time = time.time()
    for i in range(20000):
        # 获取训练数据
        batch_xs, batch_ys = mnist_data_set.train.next_batch(200)
    
        # 每迭代100个 batch,对当前训练数据进行测试,输出当前预测准确率
        if i % 2 == 0:
            train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
            print("step %d, training accuracy %g" % (i, train_accuracy))
            # 计算间隔时间
            end_time = time.time()
            print('time: ', (end_time - start_time))
            start_time = end_time
        # 训练数据
        train_step.run(feed_dict={x: batch_xs, y_: batch_ys})
    
    # 关闭会话
    sess.close()

  • 相关阅读:
    setCapture 适用范围
    移动web页面自动探测电话号码
    WEB页面JS实现一键拨号的电话拨打功能
    highcharts动态删除标示区
    【你不知道的JavaScript
    【你不知道的JavaScript
    【JavaScipt高级程序设计 第4版】第5章笔记 日期格式
    【JavaScipt高级程序设计 第4版】第6章笔记 Map Set
    【JavaScipt高级程序设计 第4版】第6章笔记 Array 集合引用类型
    【JavaScipt高级程序设计 第4版】第4章笔记
  • 原文地址:https://www.cnblogs.com/tszr/p/10555298.html
Copyright © 2020-2023  润新知