import cv2 import numpy as np img = cv2.imread("G:\MyLearning\TensorFlow_deep_learn\data\lena.jpg") img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) turn_green_hsv = img_hsv.copy() turn_green_hsv[:,:,0] = (turn_green_hsv[:,:,0] - 30 ) % 180 turn_green_img = cv2.cvtColor(turn_green_hsv,cv2.COLOR_HSV2BGR) cv2.imshow("test",turn_green_img) cv2.waitKey(0)
import cv2 img = cv2.imread("G:\MyLearning\TensorFlow_deep_learn\data\lena.jpg") img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) less_color_hsv = img_hsv.copy() less_color_hsv[:, :, 1] = less_color_hsv[:, :, 1] * 0.6 turn_green_img = cv2.cvtColor(less_color_hsv, cv2.COLOR_HSV2BGR) cv2.imshow("test",turn_green_img) cv2.waitKey(0)
import cv2 img = cv2.imread("G:\MyLearning\TensorFlow_deep_learn\data\lena.jpg") img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) less_color_hsv = img_hsv.copy() less_color_hsv[:, :, 2] = less_color_hsv[:, :, 2] * 0.6 turn_green_img = cv2.cvtColor(less_color_hsv, cv2.COLOR_HSV2BGR) cv2.imshow("test",turn_green_img) cv2.waitKey(0)
import cv2 import numpy as np import matplotlib.pyplot as plt img = plt.imread("G:\MyLearning\TensorFlow_deep_learn\data\lena.jpg") gamma_change = [np.power(x/255,0.4) * 255 for x in range(256)] gamma_img = np.round(np.array(gamma_change)).astype(np.uint8) img_corrected = cv2.LUT(img, gamma_img) plt.subplot(121) plt.imshow(img) plt.subplot(122) plt.imshow(img_corrected) plt.show()
import cv2 import numpy as np img = cv2.imread("G:\MyLearning\TensorFlow_deep_learn\data\lena.jpg") M_copy_img = np.array([[0, 0.8, -200],[0.8, 0, -100]], dtype=np.float32) img_change = cv2.warpAffine(img, M_copy_img,(300,300)) cv2.imshow("test",img_change) cv2.waitKey(0)
import cv2 import random img = cv2.imread("G:\MyLearning\TensorFlow_deep_learn\data\lena.jpg") width,height,depth = img.shape img_width_box = width * 0.2 img_height_box = height * 0.2 for _ in range(9): start_pointX = random.uniform(0, img_width_box) start_pointY = random.uniform(0, img_height_box) copyImg = img[int(start_pointX):200, int(start_pointY):200] cv2.imshow("test", copyImg) cv2.waitKey(0)
import cv2 img = cv2.imread("G:\MyLearning\TensorFlow_deep_learn\data\lena.jpg") rows,cols,depth = img.shape img_change = cv2.getRotationMatrix2D((cols/2,rows/2),45,1) res = cv2.warpAffine(img,img_change,(rows,cols)) cv2.imshow("test",res) cv2.waitKey(0)
import cv2 import numpy as np img = cv2.imread("G:\MyLearning\TensorFlow_deep_learn\data\lena.jpg") img_hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) turn_green_hsv = img_hsv.copy() turn_green_hsv[:,:,0] = (turn_green_hsv[:,:,0] + np.random.random() ) % 180 turn_green_hsv[:,:,1] = (turn_green_hsv[:,:,1] + np.random.random() ) % 180 turn_green_hsv[:,:,2] = (turn_green_hsv[:,:,2] + np.random.random() ) % 180 turn_green_img = cv2.cvtColor(turn_green_hsv,cv2.COLOR_HSV2BGR) cv2.imshow("test",turn_green_img) cv2.waitKey(0)
import cv2 def on_mouse(event, x, y, flags, param): rect_start = (0,0) rect_end = (0,0) if event == cv2.EVENT_LBUTTONDOWN: rect_start = (x,y) if event == cv2.EVENT_LBUTTONUP: rect_end = (x, y) cv2.rectangle(img, rect_start, rect_end,(0,255,0), 2) img = cv2.imread("G:\MyLearning\TensorFlow_deep_learn\data\lena.jpg") cv2.namedWindow('test') cv2.setMouseCallback("test",on_mouse) while(1): cv2.imshow("test",img) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows()