题面
LOJ 3153
solution
- 对于任意一对\(A,B\),若区间\([A,B]\)中存在一个数权值大于\(A\)或\(B\),则用这个数来替代\(A\)或\(B\)显然更优。
- 故只需要考虑每一个区间的最大值与次大值分别作为\(A,B\)。
- 可以用单调栈\(O(n)\)找到每一对这样的\(A,B\)。
- 考虑\(f[i]\)表示以\(i\)作为\(C\)时最大的\(A+B+C\),对于每一对\(A,B\),他们对应的\(C\)一定\(\ge (2*B-A)\)。
- 离线处理询问,从大到小枚举\(A\),线段树区间修改即可
code
#include<bits/stdc++.h>
using namespace std;
#define ll long long
inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*f;
}
#define lc (p<<1)
#define rc (p<<1|1)
const int N=5e5+10;
int n,a[N],q;
ll ans[N];
stack<int>s;
vector<int> B[N];
vector<pair<int,int> >que[N];
struct tree{
ll mx,lazy,v;
}T[N<<2];
inline void pushup(int p){
T[p].mx=max(T[lc].mx,T[rc].mx);
}
inline void pushdown(int p){
if(!T[p].lazy) return;
T[lc].lazy=max(T[lc].lazy,T[p].lazy);
T[lc].mx=max(T[lc].mx,T[p].lazy+T[lc].v);
T[rc].lazy=max(T[rc].lazy,T[p].lazy);
T[rc].mx=max(T[rc].mx,T[p].lazy+T[rc].v);
T[p].lazy=0;
}
inline void build(int p,int l,int r){
if(l==r){
T[p].v=a[l];
return ;
}
int mid=(l+r)>>1;
build(lc,l,mid);
build(rc,mid+1,r);
T[p].v=max(T[lc].v,T[rc].v);
}
inline void update(int p,int l,int r,int ql,int qr,ll v){
if(ql<=l&&r<=qr){
T[p].lazy=max(T[p].lazy,v);
T[p].mx=max(T[p].mx,v+T[p].v);
return ;
}
pushdown(p);
int mid=(l+r)>>1;
if(ql<=mid) update(lc,l,mid,ql,qr,v);
if(qr>mid) update(rc,mid+1,r,ql,qr,v);
pushup(p);
}
inline ll query(int p,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr){
return T[p].mx;
}
pushdown(p);
int mid=(l+r)>>1;
ll ret=0;
if(ql<=mid) ret=max(ret,query(lc,l,mid,ql,qr));
if(qr>mid) ret=max(ret,query(rc,mid+1,r,ql,qr));
return ret;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
while((!s.empty())&&a[s.top()]<a[i]) B[s.top()].push_back(i),s.pop();
if(!s.empty()) B[s.top()].push_back(i);
s.push(i);
}
build(1,1,n);
scanf("%d",&q);
for(int i=1;i<=q;++i){
int l,r;
scanf("%d%d",&l,&r);
que[l].push_back(make_pair(r,i) );
}
for(int i=n;i>=1;--i){
for(int j=0;j<B[i].size();++j){
int t=B[i][j];
if(t*2-i<=n) update(1,1,n,t*2-i,n,a[i]+a[t]);
}
for(int j=0;j<que[i].size();++j){
pair<int,int> p=que[i][j];
ans[p.second]=query(1,1,n,i,p.first);
}
}
for(int i=1;i<=q;++i)
printf("%lld\n",ans[i]);
return 0;
}