Flowers
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2616 Accepted Submission(s):
1287
Problem Description
As is known to all, the blooming time and duration
varies between different kinds of flowers. Now there is a garden planted full of
flowers. The gardener wants to know how many flowers will bloom in the garden in
a specific time. But there are too many flowers in the garden, so he wants you
to help him.
Input
The first line contains a single integer t (1 <= t
<= 10), the number of test cases.
For each case, the first line contains two integer N and M, where N (1 <= N <= 10^5) is the number of flowers, and M (1 <= M <= 10^5) is the query times.
In the next N lines, each line contains two integer Si and Ti (1 <= Si <= Ti <= 10^9), means i-th flower will be blooming at time [Si, Ti].
In the next M lines, each line contains an integer Ti, means the time of i-th query.
For each case, the first line contains two integer N and M, where N (1 <= N <= 10^5) is the number of flowers, and M (1 <= M <= 10^5) is the query times.
In the next N lines, each line contains two integer Si and Ti (1 <= Si <= Ti <= 10^9), means i-th flower will be blooming at time [Si, Ti].
In the next M lines, each line contains an integer Ti, means the time of i-th query.
Output
For each case, output the case number as shown and then
print M lines. Each line contains an integer, meaning the number of blooming
flowers.
Sample outputs are available for more details.
Sample outputs are available for more details.
Sample Input
2
1 1
5 10
4
2 3
1 4
4 8
1
4
6
Sample Output
Case #1:
0
Case #2:
1
2
1
题意:给出花的种类n以及m个要查询的时间,接下来n行是每种花的开放区间(其中一些花的开放区间有重合的部分),接下来m个数非别表示要查询的点(查询在这个时间点,有多少种花开放)
题解:直接线段树建图的话由于数据达到了10的9次方,数组无法开这么大,这就需要用到离散化
离散化:在百科上看到一句很好的话:“离散化就是把连续的量,变成离散的量即变成一个一个的值”,例如区间(1,100)由于这是一个实数区间,其中间的值有无数个,如果我们能把它变为1到100内的整数,这样这些数就变成了有限个,即离散了; ,我们将每个区间的端点都存到一个数组中,然后将这些端点,按照从小到大排列(之后要去除这个数组中重复的点),并建立为与其下标的映射,然后用其下标建树,因为我们只是使用了需要的空间,并没有在整个空间上建树,这样就大大节省了空间和时间,如题中第二个例子,我们将所有数据按照从小到大排列后为1 2 3 4 6 8 分别对应下标1 2 3 4 5 6,此题数据小我们看不出明显的差别,但是如果数据中有区间(1000,10000),那差别马上就出来了,比如我们把题中的区间(4,8)换做(1000,10000)那么如果采用离散化思想,我们还是先排列大小 1 2 3 6 1000 10000对应下标1 2 3 4 5 6,我们只需建一棵根为6的树即可,如果不用离散化,我们就需要建造根为10000的树,大大浪费了空间,
AC代码:
#include<stdio.h> #include<string.h> #include<algorithm> #define LL long long #define MAX 100100 using namespace std; int s[MAX],e[MAX],q[MAX]; int rec[MAX];//记录所有值排序后的下标 int add[MAX<<2]; int sum[MAX<<2]; int le[MAX],ri[MAX]; void pushup(int o) { sum[o]=sum[o<<1]+sum[o<<1|1]; } void pushdown(int o,int m) { if(add[o]) { add[o<<1]+=add[o]; add[o<<1|1]+=add[o]; sum[o<<1]+=add[o]*(m-(m>>1)); sum[o<<1|1]+=add[o]*(m>>1); add[o]=0; } } void gettree(int o,int l,int r) { add[o]=0; if(l==r) { sum[o]=0; return ; } int mid=(l+r)>>1; gettree(o<<1,l,mid); gettree(o<<1|1,mid+1,r); pushup(o); } void update(int o,int l,int r,int L,int R,int val) { if(L<=l&&R>=r) { add[o]+=val; sum[o]+=val*(r-l+1); return ; } pushdown(o,r-l+1); int mid=(l+r)>>1; if(L<=mid) update(o<<1,l,mid,L,R,val); if(R>mid) update(o<<1|1,mid+1,r,L,R,val); pushup(o); } int find(int o,int l,int r,int pos) { if(l==r) { return sum[o]; } pushdown(o,r-l+1); int ans=0; int mid=(l+r)>>1; if(pos<=mid) ans=find(o<<1,l,mid,pos); else ans=find(o<<1|1,mid+1,r,pos); return ans; } int query(int l,int r,int pos)//查找输入当前值,在树中对应的位置 { while(r>=l) { int mid=(l+r)>>1; if(rec[mid]==pos) return mid; else if(rec[mid]>pos) r=mid-1; else l=mid+1; } return -1; } int main() { int t,n,m,k,i; scanf("%d",&t); k=1; int maxx; while(t--) { scanf("%d%d",&n,&m); int p=1; for(i=0;i<n;i++) { scanf("%d%d",&s[i],&e[i]); rec[p++]=s[i]; rec[p++]=e[i]; } for(i=0;i<m;i++) { scanf("%d",&q[i]); rec[p++]=q[i]; } sort(rec+1,rec+p);// int R=2; for(i=2;i<p;i++)//去除数组中重复的点 { if(rec[i]!=rec[i-1]) rec[R++]=rec[i]; } sort(rec+1,rec+R); gettree(1,1,R-1);//对下标建树 for(int i=0;i<n;i++) { int x=query(1,R-1,s[i]); int y=query(1,R-1,e[i]); update(1,1,R-1,x,y,1); } printf("Case #%d: ",k++); for(i=0;i<m;i++) { int x=query(1,R-1,q[i]); printf("%d ",find(1,1,R-1,x)); } } }