现象
public class Test02 {
static Thread thread1 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("thread1");
}
});
static Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("thread2");
}
});
static Thread thread3 = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("thread3");
}
});
public static void main(String[] args) {
thread1.start();
thread2.start();
thread3.start();
}
}
上面的代码执行结果:
// 线程执行顺序是随机的
thread1
thread3
thread2
原因:start()方法只是让子线程处于就绪状态,最终执行状态是不可控的
解决方案
方案一:使用join控制多线程执行顺序
join():让主线程等待子线程结束以后才能继续运行
public static void main(String[] args) throws Exception {
thread1.start();
thread1.join(); // 让主线程放弃cpu执行权,让给子线程执行
thread2.start();
thread2.join();
thread3.start();
}
结果:
thread1
thread2
thread3
join方法的原理就是调用相应线程的wait
方法进行等待操作的,例如A线程中调用了B线程的join方法,则相当于在A线程中调用了B线程的wait方法,当B线程执行完(或者到达等待时间),B线程会自动调用自身的notifyAll( 调用了JVM底层lock.notify_all(thread)方法来唤醒 )方法唤醒A线程,从而达到同步的目的
jion()源码:
public final synchronized void join(long millis)
throws InterruptedException {
long base = System.currentTimeMillis();
long now = 0;
if (millis < 0) {
throw new IllegalArgumentException("timeout value is negative");
}
if (millis == 0) {
while (isAlive()) {
wait(0);
}
} else {
while (isAlive()) {
long delay = millis - now;
if (delay <= 0) {
break;
}
wait(delay);
now = System.currentTimeMillis() - base;
}
}
}
最终是调用object的wait方法
public final native void wait(long timeout) throws InterruptedException;
join()的调用位于main Thread的main()中,所以这里当然就是阻塞main Thread了。所以thread1.join()调用后,main Thread会阻塞起来。
方案二:利用单线程化线程池(newSingleThreadExecutor)串行执行所有任务
利用并发包里的Excutors
的newSingleThreadExecuto
产生一个单线程的线程池,而这个线程池的底层原理就是一个先进先出(FIFO)的队列。代码中executor.submit
依次添加了123线程,按照FIFO的特性,执行顺序也就是123的执行结果,从而保证了执行顺序
static ExecutorService executorService = Executors.newSingleThreadExecutor();
public static void main(String[] args) throws Exception {
executorService.submit(thread1);
executorService.submit(thread2);
executorService.submit(thread3);
executorService.shutdown();
}