• classification-softmax


    softmax分类

    import tensorflow as tf
    import numpy as npfrom input_data import read_data_sets
    
    
    mnist = read_data_sets('MNIST_data', one_hot=True)
    
    def add_layer(inputs, in_size, out_size, active_function=None):
        """
        :param inputs:
        :param in_size: 行
        :param out_size: 列 , [行, 列] =矩阵
        :param active_function:
        :return:
        """
        with tf.name_scope('layer'):
            with tf.name_scope('weights'):
                W = tf.Variable(tf.random_normal([in_size, out_size]), name='W')  #
            with tf.name_scope('bias'):
                b = tf.Variable(tf.zeros([1, out_size]) + 0.1)  # b是代表每一行数据,对应out_size列个数据
            with tf.name_scope('Wx_plus_b'):
                Wx_plus_b = tf.matmul(inputs, W) + b
            if active_function is None:
                outputs = Wx_plus_b
            else:
                outputs = active_function(Wx_plus_b)
            return outputs
    
    
    def compute_accuracy(v_xs, v_ys):
        """ 计算的准确率 """
        global prediction  # prediction value
        y_pre = sess.run(prediction, feed_dict={xs: v_xs})
        # 与期望的值比较 bool
        correct_pre = tf.equal(tf.argmax(y_pre, 1), tf.argmax(ys, 1))
        # 将bools转化为数字
        accuracy = tf.reduce_mean(tf.cast(correct_pre, tf.float32))
        result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
        return result
    
    
    # define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 784])
    ys = tf.placeholder(tf.float32, [None, 10])
    
    # softmax + cross_entropy = classification
    # add output layer
    prediction = add_layer(xs, 784, 10, active_function=tf.nn.softmax)  # softmax分类
    
    # the loss between prediction and really
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),
                                                  reduction_indices=[1]))
    
    # training
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    
    sess = tf.Session()
    sess.run(tf.initialize_all_variables())
    
    # start training
    for i in range(1000):
        batch_x, batch_y = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={xs: batch_x, ys: batch_y})
        if i % 50 == 0:
            print(compute_accuracy(mnist.test.images, mnist.test.labels))
  • 相关阅读:
    数据库:数据操作-数据的增删改
    数据库:表操作-完整性约束
    数据库:表操作-枚举类型与集合类型
    数据库:表操作-字符串类型
    数据库:表操作-数据类型(日期类型)
    数据库:表操作-数据类型(数值类型)
    python并发编程:IO模型比较分析
    java学习(二)--excel导出
    格式化字段
    myeclipse的常用快捷键
  • 原文地址:https://www.cnblogs.com/tangpg/p/9212370.html
Copyright © 2020-2023  润新知