softmax分类
import tensorflow as tf import numpy as npfrom input_data import read_data_sets mnist = read_data_sets('MNIST_data', one_hot=True) def add_layer(inputs, in_size, out_size, active_function=None): """ :param inputs: :param in_size: 行 :param out_size: 列 , [行, 列] =矩阵 :param active_function: :return: """ with tf.name_scope('layer'): with tf.name_scope('weights'): W = tf.Variable(tf.random_normal([in_size, out_size]), name='W') # with tf.name_scope('bias'): b = tf.Variable(tf.zeros([1, out_size]) + 0.1) # b是代表每一行数据,对应out_size列个数据 with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.matmul(inputs, W) + b if active_function is None: outputs = Wx_plus_b else: outputs = active_function(Wx_plus_b) return outputs def compute_accuracy(v_xs, v_ys): """ 计算的准确率 """ global prediction # prediction value y_pre = sess.run(prediction, feed_dict={xs: v_xs}) # 与期望的值比较 bool correct_pre = tf.equal(tf.argmax(y_pre, 1), tf.argmax(ys, 1)) # 将bools转化为数字 accuracy = tf.reduce_mean(tf.cast(correct_pre, tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys}) return result # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 784]) ys = tf.placeholder(tf.float32, [None, 10]) # softmax + cross_entropy = classification # add output layer prediction = add_layer(xs, 784, 10, active_function=tf.nn.softmax) # softmax分类 # the loss between prediction and really cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction), reduction_indices=[1])) # training train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session() sess.run(tf.initialize_all_variables()) # start training for i in range(1000): batch_x, batch_y = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs: batch_x, ys: batch_y}) if i % 50 == 0: print(compute_accuracy(mnist.test.images, mnist.test.labels))