Least Common Multiple
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 44922 Accepted Submission(s): 16877
Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2
3 5 7 15
6 4 10296 936 1287 792 1
Sample Output
105
10296
直接算就可以了,没输入一个数求当前数和前两个数的最小公倍数的最小公倍数。
#include<iostream> #include<stdio.h> using namespace std; long long gcd(long long x,long long y) { long long a; if(x<y) a=x,x=y,y=a; while(y!=0) { a=x%y; x=y; y=a; } return x; } int main() { int t,n; long long tmp,end; scanf("%d",&t); while(t--) { scanf("%d",&n); end=1; for(int i=0;i<n;i++) { scanf("%I64d",&tmp); end=(tmp*end)/(gcd(tmp,end)); } printf("%I64d ",end); } return 0; }