• SICP 习题 (1.10)解题总结


    SICP 习题 1.10 讲的是一个叫“Akermann函数”的东西,去百度查可以查到对应的中文翻译,叫“阿克曼函数”。

     

    就像前面的解题总结中提到的,我是一个数学恐惧者,看着稍微复杂一点的什么函数我就怕。所以这道题放了很久都没去动它,不过有担心跳过这道题对后面的学习不利,所以最终还是鼓足勇气尝试做这个题目。

     

    做完了我才发现,其实这道题真的可以跳过,做不做这道题似乎对后面的学习没什么影响。从题目的内容来看,作者应该是希望在习题中引入“树形递归”,让学生在下一节课的学习中有所准备,相当于是预习题。事实上,这个“预习题”太难了,比后面介绍的“斐波那契数”难好多,所以起不到什么“预习”的作用。

    所以,如果你也害怕数学的话,可以考虑跳过这道题,就当它从来没有在你生命中出现过。

     

    当然,如果你愿意挑战自己,和我一样尝试一下,你也会发现其实所谓的“阿克曼函数”也没什么太神秘的。

    大家都说数学是“大脑的体操”,我没有数学天分,做不了“大脑的体操”,不过我慢慢爬上去,看看“大脑的单杠”啥样子还是可以的嘛。

     

    先看看“阿克曼函数”的Scheme定义:

     

    (define (A x y)
    	(cond ((= y 0) 0)
    		((= x 0 ( * 2 y))
    		((= y 1) 2)
    		(else (A (- x 1) 
    				(A x (- y 1))))))


    刚开始写总结的时候我准备逐步逐步将过程(A 1 10),(A2 4),(A 3 3)展开,从而总结出(A 0 n),(A 1 n)和 (A 2 n)的数学含义,因为我就是这么做出这道题的。

    后来写了一半发现不对路,把那么繁琐的展开和归约步骤写下来太麻烦,大家也不会花时间去看,真是浪费时间。

    所以就希望通过其它方式和大家解释这个“阿克曼函数”,不过你如果希望自己完成这个练习,像我一样那张纸直接进行展开和归约是可行的,也不会花太长时间。

    另外,如果你只是希望了解“阿克曼函数”本身,建议你直接去百度搜索,那里能找到专业的解释,读起来比读程序简单。

    如果你是希望了解这里定义的(A x y)过程如何简单地通过递归调用实现“阿克曼函数”,那就让我们来做点事情吧。

     

    第一个可以要做的首先是照猫画猫,将(A x y)过程抄到你的Scheme解释器中,执行一下(A 1 10), (A 2 4), (A 3 3)看看有什么结果,同时可以针对(A 1 n)和 (A 2 n)多做几次试验,比如(A 1 7), (A 1 6), (A 2 2), (A 2 3)之类的,注意,跑(A 2 5)以上会达到递归嵌套限制。

    跑完以上过程以后大概会有个认识。(A 0 n)比较简单,就是返回(2*n),这个从过程的代码里也能看出来。(A 1 n)复杂一点点,不过做多了计算机工作,对1024,2048之类的数字还是比较敏感的,大概可以猜出来(A 1 n)返回的是2的n次方,具体为什么会返回2的n次方就需要分析一下才知道。(A 2 n)就比较难猜了,需要看看程序到底怎么跑的才行。

     

    怎么来分析(A x y)的运行过程呢?简单一点的方法是在(A x y)过程中加入(format #t )输出,看看到底是怎么调用的。

    比如我仿照(A x y)过程写了一个(A-with-info x y)过程,代码如下:

     

     

    (define (A-with-info x y)
      (format #t  "Evaluating (A ~S ~S) " x y)
      (cond ((= y 0)  (format #t "the result is 0~%"))
    	((= x 0)  (format #t "the result is ~S~%" (* 2 y)))
    	((= y 1)  (format #t "the result is 2~%"))
    	(else (format #t "transforming to (A ~S (A ~S ~S))~%" (- x 1) x (- y 1))))
      (cond ((= y 0)  0)
    	((= x 0)  (* 2 y))
    	((= y 1)  2)
    	(else (A-with-info (- x 1)
    			     (A-with-info x (- y 1))))))


     

    以上代码几乎完全和(A x y)的代码一样,就是增加了一些format的输出而已,这样可以在代码运行过程中跟踪过程的变换。

    比如,调用(A-with-info 1 8)的结果如下,通过以下输出可以比较明了地看清过程的变换。

     

     

    1 ]=> (A-with-info 1 8)

    Evaluating (A 1 8) transforming to (A 0 (A 1 7))

    Evaluating (A 1 7) transforming to (A 0 (A 1 6))

    Evaluating (A 1 6) transforming to (A 0 (A 1 5))

    Evaluating (A 1 5) transforming to (A 0 (A 1 4))

    Evaluating (A 1 4) transforming to (A 0 (A 1 3))

    Evaluating (A 1 3) transforming to (A 0 (A 1 2))

    Evaluating (A 1 2) transforming to (A 0 (A 1 1))

    Evaluating (A 1 1) the result is 2

    Evaluating (A 0 2) the result is 4

    Evaluating (A 0 4) the result is 8

    Evaluating (A 0 8) the result is 16

    Evaluating (A 0 16) the result is 32

    Evaluating (A 0 32) the result is 64

    Evaluating (A 0 64) the result is 128

    Evaluating (A 0 128) the result is 256

    ;Value: 256

     

    如果你愿意花时间,可以想一些办法让上面的输出更清晰一些,比如我写的另一个过程(A-with-detail)的输出如下:

    1 ]=> (A-with-detail 1 8 "" "")

    (A 1 8)

    (A 0 (A 1 7))

    (A 0 (A 0 (A 1 6)))

    (A 0 (A 0 (A 0 (A 1 5))))

    (A 0 (A 0 (A 0 (A 0 (A 1 4)))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 3))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 2)))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 1 1) is 2])))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2)))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 2) is 4]))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 4))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 4) is 8])))))

    (A 0 (A 0 (A 0 (A 0 (A 0 8)))))

    (A 0 (A 0 (A 0 (A 0 [(A 0 8) is 16]))))

    (A 0 (A 0 (A 0 (A 0 16))))

    (A 0 (A 0 (A 0 [(A 0 16) is 32])))

    (A 0 (A 0 (A 0 32)))

    (A 0 (A 0 [(A 0 32) is 64]))

    (A 0 (A 0 64))

    (A 0 [(A 0 64) is 128])

    (A 0 128)

    [(A 0 128) is 256]

    ;Value: 256

     

    这里就可以清晰地看见(A 1 8)的展开和归约过程。

     

    同样,我们可以看看(A 2 4)的变换过程:

    1 ]=> (A-with-detail 2 4 "" "")

    (A 2 4)

    (A 1 (A 2 3))

    (A 1 (A 1 (A 2 2)))

    (A 1 (A 1 (A 1 (A 2 1))))

    (A 1 (A 1 (A 1 [(A 2 1) is 2])))

    (A 1 (A 1 (A 1 2)))

    (A 1 (A 1 (A 0 (A 1 1))))

    (A 1 (A 1 (A 0 [(A 1 1) is 2])))

    (A 1 (A 1 (A 0 2)))

    (A 1 (A 1 [(A 0 2) is 4]))

    (A 1 (A 1 4))

    (A 1 (A 0 (A 1 3)))

    (A 1 (A 0 (A 0 (A 1 2))))

    (A 1 (A 0 (A 0 (A 0 (A 1 1)))))

    (A 1 (A 0 (A 0 (A 0 [(A 1 1) is 2]))))

    (A 1 (A 0 (A 0 (A 0 2))))

    (A 1 (A 0 (A 0 [(A 0 2) is 4])))

    (A 1 (A 0 (A 0 4)))

    (A 1 (A 0 [(A 0 4) is 8]))

    (A 1 (A 0 8))

    (A 1 [(A 0 8) is 16])

    (A 1 16)

    (A 0 (A 1 15))

    (A 0 (A 0 (A 1 14)))

    (A 0 (A 0 (A 0 (A 1 13))))

    (A 0 (A 0 (A 0 (A 0 (A 1 12)))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 11))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 10)))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 9))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 8)))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 7))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 6)))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 5))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 4)))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 3))))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 2)))))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1))))))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 1 1) is 2])))))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2)))))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 2) is 4]))))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 4))))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 4) is 8])))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 8)))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 8) is 16]))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 16))))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 16) is 32])))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 32)))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 32) is 64]))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 64))))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 64) is 128])))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 128)))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 128) is 256]))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 256))))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 256) is 512])))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 512)))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 512) is 1024]))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 1024))))))

    (A 0 (A 0 (A 0 (A 0 (A 0 [(A 0 1024) is 2048])))))

    (A 0 (A 0 (A 0 (A 0 (A 0 2048)))))

    (A 0 (A 0 (A 0 (A 0 [(A 0 2048) is 4096]))))

    (A 0 (A 0 (A 0 (A 0 4096))))

    (A 0 (A 0 (A 0 [(A 0 4096) is 8192])))

    (A 0 (A 0 (A 0 8192)))

    (A 0 (A 0 [(A 0 8192) is 16384]))

    (A 0 (A 0 16384))

    (A 0 [(A 0 16384) is 32768])

    (A 0 32768)

    [(A 0 32768) is 65536]

    ;Value: 65536

     

    最后就是有关(A 2 n)的数学含义,仔细看看上面的变换过程大概可以想明白,就是2的右上角有n个不断变小的2,就是取2 的2次方,赋予A,然后取2的A次方,赋予B,再取2的B次方,赋予C,一直下去,做n次。从上面的分析看,这个“阿克曼函数”有迭代实现喔。是否还记得我们之前讨论过的“迭代计算过程”和“递归计算过程”?书中的“阿克曼函数”的实现使用的是“递归计算过程”,而这个函数显然有“迭代计算过程”的实现方法。有关这个我们在这里就不详细讨论了,另找时间再讲这个东西。

     

    如果看完上面的内容不明白的话最好自己做完成以上步骤,应该会有一些认识。如果还是不明白就去看看网上有关“阿克曼函数”的具体解释,看了还是不明白的话就放弃吧,“数学不是个买卖,想买就能买”。

     

    对于已经明白过来的同学们,可以想想(A 3 n)的数学含义是什么,有点花脑筋哟!想明白就再想想(A 4 n), (A 5 n),想想(A m n)函数中m 和n分别起到什么作用,(A m n)的广泛含义是什么?

    问完这些问题,我似乎看到了很多好学的同学们抓破脑袋毫无头绪的样子,于是我开心地笑了,愉快地关上了我的MacBook,深藏功与名。

     

  • 相关阅读:
    Python学习第106天(Django的静态文件static、url分组)
    Python学习第105天(Django初步实现)
    Python学习第104天(Django前传web框架)
    Python学习第103天(http协议)
    Python学习第102(数据库进阶)
    Python学习第101天(mysql索引)
    Python学习第100天(多表查询:连接查询、复合查询、子查询)
    Python学习第99天(子网划分)
    java强制转换+自动转换
    WINDOWS快捷键
  • 原文地址:https://www.cnblogs.com/suncoolcat/p/3313365.html
Copyright © 2020-2023  润新知