CF上的3道小题
终于调完了啊....
T1:CF702E Analysis of Pathes in Functional Graph
题意:你获得了一个n个点有向图,每个点只有一条出边。第i个点的出边指向fi,边权为wi。分别求从每个点出发走k步经过的边权和以及最小的边权值。
分析:倍增嘛...f[i][j]表示j走$2^i$步到达哪个点,然后用这个求出h[i][j]表示j走$2^i$步边权最小值,g[i][j]表示j走$2^i$步边权和。
然后把K二进制拆分一下即可。
代码:
#include <cstdio> #include <string.h> #include <algorithm> using namespace std; typedef long long ll; #define N 100050 int f[44][N],g[44][N],n; ll h[44][N],K; int main() { // freopen("today.in","r",stdin); // freopen("today.out","w",stdout); scanf("%d%lld",&n,&K); int i,x,j; for(i=1;i<=n;i++) { scanf("%d",&f[0][i]); f[0][i]++; } for(i=1;i<=n;i++) { scanf("%d",&x); g[0][i]=h[0][i]=x; } for(i=1;(1ll<<i)<=K;i++) { for(j=1;j<=n;j++) { f[i][j]=f[i-1][f[i-1][j]]; g[i][j]=min(g[i-1][j],g[i-1][f[i-1][j]]); h[i][j]=h[i-1][j]+h[i-1][f[i-1][j]]; } } for(i=1;i<=n;i++) { ll t=K; int x=i; int ans1=1<<30; ll ans2=0; for(j=0;j<=40;j++) { if(t&(1ll<<j)) { ans1=min(ans1,g[j][x]); ans2+=h[j][x]; x=f[j][x]; } } printf("%lld %d ",ans2,ans1); } } /* 7 3 2 3 4 5 4 3 7 6 3 1 4 2 2 3 */
T2:CF671B Robin Hood
题意:你拥有n堆石子,第i堆石子有ai个,你要操作k次,每次从有最多石子的堆拿出一个石子放入有最少石子的堆。求操作后石子最多的堆和石子最少的堆的石子差。
分析:考虑二分最大值/最小值,然后判断能否铺平(将小于/大于的部分加起来和K比)。
注意所有石子都相等的时候要停止,以及一堆特判。
代码:
#include <cstdio> #include <string.h> #include <algorithm> using namespace std; #define N 500050 typedef long long ll; int n,a[N],K,b[N],c[N],d[N]; bool check1(int x) { int i,re=0; for(i=1;i<=n;i++) { if(a[i]>x) re+=a[i]-x; if(re>K) return 0; } return 1; } bool check2(int x) { int i,re=0; for(i=1;i<=n;i++) { if(a[i]<x) re+=x-a[i]; if(re>K) return 0; } return 1; } ll Abs(ll x) {return x>0?x:-x;} int main() { // freopen("problem.in","r",stdin); // freopen("problem.out","w",stdout); scanf("%d%d",&n,&K); int i; ll sum=0; ll cha=0; for(i=1;i<=n;i++) { scanf("%d",&a[i]); sum+=a[i]; sum%=n; } for(i=1;i<=n;i++) cha+=Abs(a[i]-sum/n); sum%=n; if(!sum&&2*K>=cha) { puts("0"); return 0; } int flg=0; for(i=2;i<=n;i++) if(a[i]!=a[i-1]) flg=1; if(!flg) { printf("%d ",0); return 0; } // sort(a+1,a+n+1); int l=0,r=1<<30; while(l<r) { int mid=(l+r)>>1; if(check1(mid)) r=mid; else l=mid+1; } int ans1=l; l=0,r=1<<30; while(l<r) { int mid=(l+r)>>1; if(check2(mid)) l=mid+1; else r=mid; } int ans2=l-1; // if(ans1>ans2) swap(ans1,ans2); if(ans1<=ans2) { printf("%d ",sum?1:0); }else printf("%d ",ans1-ans2); }
T3:CF671C Ultimate Weirdness of an Array
题意:给你一个长度为n的序列,定义f(i,j)表示把序列的i到j这段扣掉后序列选出两个数做gcd的最大值。
求$sumlimits_{i=1}^{n}sumlimits_{j=i}^{n} f(i,j)$。
分析:设$h(i$)表示有多少对$l,r$使得$f(l,r)<=i$,nxt[j]表示使得$f(j,k)<=i$成立的最小的$k$。
于是$h(i)=sumlimits_{j=1}^{n}n-nxt[j]+1$,且答案$=sumlimits_{i=1}^{maxn}i*(h(i)-h(i-1))$
考虑从h(i)->h(i-1)会发生什么,发生变化的一定是原来nxt的位置上的数是i的倍数的那些数。
把是i的倍数那些位置的第一个,第二个,倒数第二个和倒数第一个拿出来,然后分析一通。
发现这其实是区间取max,同时维护区间和。
并且nxt随i的减小单调不降,故每次修改相当于区间覆盖。
线段树维护nxt即可。
代码:
#include <cstdio> #include <string.h> #include <algorithm> #include <vector> using namespace std; #define N 200050 #define ls p<<1 #define rs p<<1|1 typedef long long ll; int mx[N<<2],mn[N<<2],cov[N<<2],n; ll sum[N<<2],h[N]; int a[N],cnt[N],fs[N],se[N],lst[N],cls[N]; vector<int>v[N]; void pushup(int p) { mx[p]=max(mx[ls],mx[rs]); mn[p]=min(mn[ls],mn[rs]); sum[p]=sum[ls]+sum[rs]; } void pushdown(int l,int r,int p) { if(cov[p]) { int mid=(l+r)>>1; int d=cov[p]; mn[ls]=mx[ls]=d; sum[ls]=1ll*d*(mid-l+1); cov[ls]=d; mn[rs]=mx[rs]=d; sum[rs]=1ll*d*(r-mid); cov[rs]=d; cov[p]=0; } } void build(int l,int r,int p) { if(l==r) { mx[p]=mn[p]=sum[p]=l; return ; } int mid=(l+r)>>1; build(l,mid,ls); build(mid+1,r,rs); pushup(p); } void update(int l,int r,int x,int y,int v,int p) { if(mn[p]>=v) return ; if(x<=l&&y>=r&&mx[p]<=v) { mn[p]=mx[p]=v; sum[p]=1ll*(r-l+1)*v; cov[p]=v; return ; } pushdown(l,r,p); int mid=(l+r)>>1; if(x<=mid) update(l,mid,x,y,v,ls); if(y>mid) update(mid+1,r,x,y,v,rs); pushup(p); } int main() { scanf("%d",&n); int i,maxn=0,j; for(i=1;i<=n;i++) scanf("%d",&a[i]),maxn=max(maxn,a[i]); for(i=1;i<=maxn;i++) { for(j=0;j<=maxn;j+=i) { v[j].push_back(i); } } for(i=1;i<=n;i++) { int lim=v[a[i]].size(); for(j=0;j<lim;j++) { int tmp=v[a[i]][j]; cnt[tmp]++; cls[tmp]=lst[tmp]; lst[tmp]=i; if(cnt[tmp]==1) fs[tmp]=i; if(cnt[tmp]==2) se[tmp]=i; } } ll tot=n*(n+1); build(1,n,1); h[maxn]=tot-sum[1]; ll ans=0; for(i=maxn;i;i--) { if(cnt[i]>=2) { // printf("%d %d %d %d ",fs[i],se[i],cls[i],lst[i]); update(1,n,se[i]+1,n,n+1,1); update(1,n,fs[i]+1,se[i],lst[i],1); update(1,n,1,fs[i],cls[i],1); } h[i-1]=tot-sum[1]; // printf("%lld ",h[i-1]); ans+=i*(h[i]-h[i-1]); } // puts("________________"); // for(i=1;i<=20;i++) printf("%lld ",h[i]); // for(i=1;i<maxn;i++) ans+=(i)*(h[i+1]-h[i]); printf("%lld ",ans); }