• [luoguP1090][Noip2004]合并果子


                                              合并果子

    首先来看一下题目:

    (OI2004合并果子)

    【题目描述】

    果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆

    每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和.

    因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

    例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

    【输入格式】

    第一行:一个数n,表示果子的堆数。

    第二行:n个数ai,表示每堆果子的果子个数。

    【输出格式】

    一个数:多多所要花费的最小的体力。

    【数据范围】:

    n≤100000

    【输入样例1】

    3

    1 2 9

    【输出样例1】

    15

    【输入样例2】

    10

    3 5 1 7 6 4 2 5 4 1

    【输出样例2】

    120

    这个题就用到了堆的思想。按照一般的思想来打代码,应该是每一次合并之后就从大到小拍一遍序,接着合并。按照这样的思路,答案是没有错的,但是时间复杂度就会十分的高。下面附一下普通思路的合并果子的代码:

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #define MAXN 100010
    using namespace std;
    int n,heavy[MAXN],energy[MAXN]={0},total=0; 
    int cmp(int x,int y)
    {
        return x>y;
    }
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
         scanf("%d",&heavy[i]);
        sort(heavy+1,heavy+n+1,cmp);
        for(int i=2;i<=n;i++)
        {
            heavy[i]+=heavy[i-1];
            heavy[i-1]=0;
            sort(heavy+1,heavy+n+1,cmp);
            energy[i]=heavy[i]+heavy[i-1];
        }
        for(int i=1;i<=n-1;i++)
         total+=energy[i];
         printf("%d",total);
         return 0;
    }

    那么在这里就用到了堆(不懂堆的小朋友:详见->《堆》)

    那么思路是这样的:

    首先这个问题比较模糊,所以我们可以将它的问题描述转化一下:给了n个节点(即果子堆数),每一个节点有一个权值w[i](每一个堆的果子个数),我们要做的就是将其中的两个合并为一棵树, 假设每一个节点到根节点的距离为d[i],那么我们就要使得最终的∑(w[i]*d[i])最小(不懂∑的请点这里->《希腊字母在数学计算中表示的含义》)。那么具体的方法就是这样的:

    1. 从这个森林里面取出两个权值最小的节点。
    2. 将他们的权值相加,得到一个新的子树,然后删除原子树。
    3. 将当前得到的新子树插入到森林中然后维护。
    4. 不断重复1~3直到整个森林里面只有一棵树为止。

    所以这里最重要的其实就是两个操作:取出get()和插入put()

    但是由于取出只能取出根节点,二我们要取出的还必须是权值最小的节点,所以我们要制作一个小根堆。

    下面附上代码:

    #include<iostream>
    #include<cstdio>
    using namespace std;
    int heap_size,n;
    int heap[30001];
    void swip(int &a,int &b)
    {
        int t=1;a=b;b=t;
    }
    void put(int d)
    {
        int now,next;
        heap[++heap_size]=d;
        now=heap_size;
        while(now>1)
        {
            next=now>>1;
            if(heap[now]>=heap[next]) return;
            swap(heap[now],heap[next]);
            now=next;
        }
    }
    int get()
    {
        int now,next,res;
        res=heap[1];
        heap[1]=heap[heap_size--];
        now=1;
        while(now*2<=heap_size)
        {
            next=now*2;
            if(next<heap_size&&heap[next+1]<heap[next]) next++;
            if(heap[now]<heap[next]) return res;
            swap(heap[now],heap[next]);
            now=next; 
        }
        return res;
    }
    void work()
    {
        int i,x,y,ans=0;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&x);
            put(x);
        }
        for(i=1;i<n;i++)
        {
            x=get();
            y=get();
            ans+=x+y;
            put(x+y);
        }
        printf("%d",ans);
    }
    int main()
    {
        work();
        return 0;
    }

     

     

  • 相关阅读:
    A. k-rounding
    哗啦啦村的刁难(4)
    喵哈哈村的种花魔法
    喵哈哈村的赛马比赛
    喵哈哈村的括号序列
    喵哈哈村的排队
    python中递归调用
    python-中函数的参数
    shell中参数及带色彩打印
    python-文件读写
  • 原文地址:https://www.cnblogs.com/sue_shallow/p/P1090.html
Copyright © 2020-2023  润新知