• [Swift]LeetCode886. 可能的二分法 | Possible Bipartition


    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
    ➤微信公众号:山青咏芝(shanqingyongzhi)
    ➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
    ➤GitHub地址:https://github.com/strengthen/LeetCode
    ➤原文地址: https://www.cnblogs.com/strengthen/p/10603871.html 
    ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
    ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

    Given a set of N people (numbered 1, 2, ..., N), we would like to split everyone into two groups of any size.

    Each person may dislike some other people, and they should not go into the same group. 

    Formally, if dislikes[i] = [a, b], it means it is not allowed to put the people numbered a and b into the same group.

    Return true if and only if it is possible to split everyone into two groups in this way.

    Example 1:

    Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]
    Output: true
    Explanation: group1 [1,4], group2 [2,3]
    

    Example 2:

    Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]
    Output: false
    

    Example 3:

    Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
    Output: false 

    Note:

    1. 1 <= N <= 2000
    2. 0 <= dislikes.length <= 10000
    3. 1 <= dislikes[i][j] <= N
    4. dislikes[i][0] < dislikes[i][1]
    5. There does not exist i != j for which dislikes[i] == dislikes[j].

    给定一组 N 人(编号为 1, 2, ..., N), 我们想把每个人分进任意大小的两组。

    每个人都可能不喜欢其他人,那么他们不应该属于同一组。

    形式上,如果 dislikes[i] = [a, b],表示不允许将编号为 a 和 b 的人归入同一组。

    当可以用这种方法将每个人分进两组时,返回 true;否则返回 false。 

    示例 1:

    输入:N = 4, dislikes = [[1,2],[1,3],[2,4]]
    输出:true
    解释:group1 [1,4], group2 [2,3]
    

    示例 2:

    输入:N = 3, dislikes = [[1,2],[1,3],[2,3]]
    输出:false
    

    示例 3:

    输入:N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
    输出:false 

    提示:

    1. 1 <= N <= 2000
    2. 0 <= dislikes.length <= 10000
    3. 1 <= dislikes[i][j] <= N
    4. dislikes[i][0] < dislikes[i][1]
    5. 对于 dislikes[i] == dislikes[j] 不存在 i != j 

    【BFS】
    Runtime: 836 ms
    Memory Usage: 19.8 MB
     1 class Solution {
     2     func possibleBipartition(_ N: Int, _ dislikes: [[Int]]) -> Bool {
     3         var len:Int = dislikes.count
     4         if len < 2 {return true}
     5         var color:[Int] = [Int](repeating:0,count:N + 1)
     6         var graph:[[Int]] = [[Int]](repeating:[Int](),count:N + 1)
     7         for i in 0..<len
     8         {
     9             var m:Int = dislikes[i][0]
    10             var n:Int = dislikes[i][1]
    11             graph[m].append(n)
    12             graph[n].append(m)
    13         }
    14         for i in 1...N
    15         {
    16             if color[i] == 0
    17             {
    18                 color[i] = 1
    19                 var q:[Int] = [Int]()
    20                 q.append(i)
    21                 while (!q.isEmpty)
    22                 {
    23                     var cur:Int = q.removeFirst()
    24                     for j in graph[cur]
    25                     {
    26                         if color[j] == 0
    27                         {
    28                             color[j] = color[cur] == 1 ? 2 : 1
    29                             q.append(j)
    30                         }
    31                         else
    32                         {
    33                             if color[j] == color[cur] {return false}
    34                         }
    35                     }
    36                 }
    37             }
    38         }
    39         return true
    40     }
    41 }

    【DFS】

    Runtime: 1560 ms
    Memory Usage: 50.2 MB
     1 class Solution {
     2     func possibleBipartition(_ N: Int, _ dislikes: [[Int]]) -> Bool {
     3         var graph:[[Int]] = [[Int]](repeating:[Int](repeating:0,count:N),count:N)
     4         for d in dislikes
     5         {
     6             graph[d[0] - 1][d[1] - 1] = 1
     7             graph[d[1] - 1][d[0] - 1] = 1
     8         }
     9         var group:[Int] = [Int](repeating:0,count:N)
    10         for i in 0..<N
    11         {
    12             if group[i] == 0 && !dfs(graph, &group, i, 1)
    13             {
    14                 return false
    15             }
    16         }
    17         return true
    18     }
    19 
    20     func dfs(_ graph:[[Int]],_ group:inout [Int],_ index:Int,_ g:Int) -> Bool
    21     {
    22         group[index] = g
    23         for i in 0..<graph.count
    24         {
    25             if graph[index][i] == 1
    26             {
    27                 if group[i] == g
    28                 {
    29                     return false
    30                 }
    31                 if group[i] == 0 && !dfs(graph, &group, i, -g)
    32                 {
    33                     return false
    34                 }
    35             }
    36         }
    37         return true
    38     }
    39 }
  • 相关阅读:
    _status()函数
    _clear87()函数
    _clear87()函数
    _clear87()函数
    _clear87()函数
    南邮NOJ1009 2的n次方
    南邮NOJ2063 突发奇想的茂凯
    南邮NOJ2063 突发奇想的茂凯
    【HDOJ】1297 Children’s Queue
    【HDOJ】2103 Family planning
  • 原文地址:https://www.cnblogs.com/strengthen/p/10603871.html
Copyright © 2020-2023  润新知